{"title":"Preparation irinotecan hydrochloride loaded PEGylated liposomes using novel method supercritical fluid and condition optimized by Box–Behnken design","authors":"Misagh Mohammadi, Mehrnaz Karimi, Farhad Raofie","doi":"10.1186/s11671-024-04071-z","DOIUrl":null,"url":null,"abstract":"<div><p>A semi-synthetic camptothecin derivative known as irinotecan hydrochloride is frequently used to treat colorectal cancer, including colorectal adenocarcinoma and lung cancers involving small cells. Irinotecan has a very short half-life; therefore, continuous infusions are required to keep the drug’s blood levels at therapeutic levels, which could produce cumulative toxicities. Effective delivery techniques, including liposomes, have been developed to address these shortcomings. In this study, a continuous supercritical fluid approach dubbed Expansion Supercritical Fluid into an aqueous solution, in which the pressure decreases rapidly but remains over the critical pressure, is proposed to manufacture polyethylene glycolylated (PEGylated) liposomes carrying irinotecan hydrochloride. To accomplish this, PEGylated liposomes were created using a Box–Behnken design, and the operating parameters (flow rate, temperature, and pressure drop) were optimized. Encapsulation efficiency, mean size, and prepared liposome count were 94.6%, 55 nm, and 758 under ideal circumstances. Additionally, the stability of the PEGylated liposome was investigated during 8 weeks, and also PEGylated liposome-loaded irinotecan release profile was compared to conventional liposomes and free irinotecan, and a constant drug release was seen after the first burst release from liposomes.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04071-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A semi-synthetic camptothecin derivative known as irinotecan hydrochloride is frequently used to treat colorectal cancer, including colorectal adenocarcinoma and lung cancers involving small cells. Irinotecan has a very short half-life; therefore, continuous infusions are required to keep the drug’s blood levels at therapeutic levels, which could produce cumulative toxicities. Effective delivery techniques, including liposomes, have been developed to address these shortcomings. In this study, a continuous supercritical fluid approach dubbed Expansion Supercritical Fluid into an aqueous solution, in which the pressure decreases rapidly but remains over the critical pressure, is proposed to manufacture polyethylene glycolylated (PEGylated) liposomes carrying irinotecan hydrochloride. To accomplish this, PEGylated liposomes were created using a Box–Behnken design, and the operating parameters (flow rate, temperature, and pressure drop) were optimized. Encapsulation efficiency, mean size, and prepared liposome count were 94.6%, 55 nm, and 758 under ideal circumstances. Additionally, the stability of the PEGylated liposome was investigated during 8 weeks, and also PEGylated liposome-loaded irinotecan release profile was compared to conventional liposomes and free irinotecan, and a constant drug release was seen after the first burst release from liposomes.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.