{"title":"Tree hole rescue: an AI approach for suicide risk detection and online suicide intervention.","authors":"Zhisheng Huang, Qing Hu","doi":"10.1007/s13755-024-00298-3","DOIUrl":null,"url":null,"abstract":"<p><p>Adolescent suicide has become an important social issue of general concern. Many young people express their suicidal feelings and intentions through online social media, e.g., Twitter, Microblog. The \"tree hole\" is the Chinese name for places on the Web where people post secrets. It provides the possibility of using Artificial Intelligence and big data technology to detect the posts where someone express the suicidal signal from those \"tree hole\" social media. We have developed the Web-based intelligent agents (i.e., AI-based programs) which can monitor the \"tree hole\" websites in Microblog every day by using knowledge graph technology. We have organized Tree-hole Rescue Team, which consists of more than 1000 volunteers, to carry out suicide rescue intervention according to the daily monitoring notifications. From 2018 to 2023, Tree-hole Rescue Team has prevented more than 6600 suicides. A few thousands of people have been saved within those 6 years. In this paper, we present the basic technology of Web-based Tree Hole intelligent agents and elaborate how the intelligent agents can discover suicide attempts and issue corresponding monitoring notifications and how the volunteers of Tree Hole Rescue Team can conduct online suicide intervention. This research also shows that the knowledge graph approach can be used for the semantic analysis on social media.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00298-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adolescent suicide has become an important social issue of general concern. Many young people express their suicidal feelings and intentions through online social media, e.g., Twitter, Microblog. The "tree hole" is the Chinese name for places on the Web where people post secrets. It provides the possibility of using Artificial Intelligence and big data technology to detect the posts where someone express the suicidal signal from those "tree hole" social media. We have developed the Web-based intelligent agents (i.e., AI-based programs) which can monitor the "tree hole" websites in Microblog every day by using knowledge graph technology. We have organized Tree-hole Rescue Team, which consists of more than 1000 volunteers, to carry out suicide rescue intervention according to the daily monitoring notifications. From 2018 to 2023, Tree-hole Rescue Team has prevented more than 6600 suicides. A few thousands of people have been saved within those 6 years. In this paper, we present the basic technology of Web-based Tree Hole intelligent agents and elaborate how the intelligent agents can discover suicide attempts and issue corresponding monitoring notifications and how the volunteers of Tree Hole Rescue Team can conduct online suicide intervention. This research also shows that the knowledge graph approach can be used for the semantic analysis on social media.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.