{"title":"Structure-aided function assignment to the transcriptomic conopeptide Am931","authors":"Shamasoddin Shekh , Shweta Dhannura , Pooja Dhurjad , Challa Ravali , Spoorti M M , Sreepriya Kakkat , Vishwajyothi , Marimuthu Vijayasarathy , Rajesh Sonti , Konkallu Hanumae Gowd","doi":"10.1016/j.toxicon.2024.108087","DOIUrl":null,"url":null,"abstract":"<div><p>Implementation of the next-generation technologies for gene sequencing of venom duct transcriptome has provided a large number of peptide sequences of marine cone snails. Emerging technologies on computational platforms are now rapidly evolving for the accurate predictions of the 3D structure of the polypeptide using the primary sequence. The current report aims to integrate the information derived from these two technologies to develop the concept of structure-aided function assignment of <em>Conus</em> peptides. The proof of the concept was demonstrated using the transcriptomic peptide Am931 of <em>C. amadis</em>. The 3D structure of Am931 was computed using Density Functional Theory (DFT) and the quality of the predicted structure was confirmed using 2D NMR spectroscopy of the corresponding synthetic peptide. The computed structure of Am931 aligns with the active site motif of thioredoxins, possess catalytic disulfide conformation of (+, −)AntiRHHook and selectively modulate the N-terminal Cys3 thiol. These structural features indicate that Am931 may act as a disulfide isomerase and modulate the oxidative folding of conotoxins. Synthetic peptide Am931 provides proof-of-function by exhibiting catalytic activity on the oxidative folding of α-conotoxin ImI and improving the yield of native globular fold. The approach of integration of new technologies in the <em>Conus</em> peptide research may help to accelerate the discovery pipeline of new/improved conotoxin functional.</p></div>","PeriodicalId":23289,"journal":{"name":"Toxicon","volume":"250 ","pages":"Article 108087"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041010124006597","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Implementation of the next-generation technologies for gene sequencing of venom duct transcriptome has provided a large number of peptide sequences of marine cone snails. Emerging technologies on computational platforms are now rapidly evolving for the accurate predictions of the 3D structure of the polypeptide using the primary sequence. The current report aims to integrate the information derived from these two technologies to develop the concept of structure-aided function assignment of Conus peptides. The proof of the concept was demonstrated using the transcriptomic peptide Am931 of C. amadis. The 3D structure of Am931 was computed using Density Functional Theory (DFT) and the quality of the predicted structure was confirmed using 2D NMR spectroscopy of the corresponding synthetic peptide. The computed structure of Am931 aligns with the active site motif of thioredoxins, possess catalytic disulfide conformation of (+, −)AntiRHHook and selectively modulate the N-terminal Cys3 thiol. These structural features indicate that Am931 may act as a disulfide isomerase and modulate the oxidative folding of conotoxins. Synthetic peptide Am931 provides proof-of-function by exhibiting catalytic activity on the oxidative folding of α-conotoxin ImI and improving the yield of native globular fold. The approach of integration of new technologies in the Conus peptide research may help to accelerate the discovery pipeline of new/improved conotoxin functional.
期刊介绍:
Toxicon has an open access mirror Toxicon: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. An introductory offer Toxicon: X - full waiver of the Open Access fee.
Toxicon''s "aims and scope" are to publish:
-articles containing the results of original research on problems related to toxins derived from animals, plants and microorganisms
-papers on novel findings related to the chemical, pharmacological, toxicological, and immunological properties of natural toxins
-molecular biological studies of toxins and other genes from poisonous and venomous organisms that advance understanding of the role or function of toxins
-clinical observations on poisoning and envenoming where a new therapeutic principle has been proposed or a decidedly superior clinical result has been obtained.
-material on the use of toxins as tools in studying biological processes and material on subjects related to venom and antivenom problems.
-articles on the translational application of toxins, for example as drugs and insecticides
-epidemiological studies on envenoming or poisoning, so long as they highlight a previously unrecognised medical problem or provide insight into the prevention or medical treatment of envenoming or poisoning. Retrospective surveys of hospital records, especially those lacking species identification, will not be considered for publication. Properly designed prospective community-based surveys are strongly encouraged.
-articles describing well-known activities of venoms, such as antibacterial, anticancer, and analgesic activities of arachnid venoms, without any attempt to define the mechanism of action or purify the active component, will not be considered for publication in Toxicon.
-review articles on problems related to toxinology.
To encourage the exchange of ideas, sections of the journal may be devoted to Short Communications, Letters to the Editor and activities of the affiliated societies.