Vladimir Gorbachev, Larisa Miloglyadova, Peter Chen
{"title":"An automatic variable laser power attenuator for continuous-wave quantum cascade lasers in cryogenic ion vibrational predissociation spectroscopy.","authors":"Vladimir Gorbachev, Larisa Miloglyadova, Peter Chen","doi":"10.1063/5.0189140","DOIUrl":null,"url":null,"abstract":"<p><p>Cryogenic ion vibrational predissociation (CIVP) spectroscopy is an established and valuable technique for molecular elucidation in the gas phase. CIVP relies on tunable lasers, wherein among typical laser schemes, the application of mid-infrared continuous-wave quantum cascade laser (cw-QCL) is the most robust and elegant solution, as we have recently demonstrated. However, potential challenges arise from an inhomogeneous character across laser power tuning curves. A large laser power output could have undesired consequences, such as multiphoton absorption or saturation effects. Significant variations in laser power tuning curves could potentially alter the shape of the investigated band, particularly for diffuse bands. In this study, we have developed and introduced an automatic variable laser power attenuator designed to keep the laser power output uniform at a user-defined value across the entire available spectral range. We demonstrated the application of this attenuator in obtaining CIVP spectra of a model compound with a diffuse N-H-N band. This approach enhances the reliability of measuring diffuse bands and overall applicability of cw-QCL.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0189140","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cryogenic ion vibrational predissociation (CIVP) spectroscopy is an established and valuable technique for molecular elucidation in the gas phase. CIVP relies on tunable lasers, wherein among typical laser schemes, the application of mid-infrared continuous-wave quantum cascade laser (cw-QCL) is the most robust and elegant solution, as we have recently demonstrated. However, potential challenges arise from an inhomogeneous character across laser power tuning curves. A large laser power output could have undesired consequences, such as multiphoton absorption or saturation effects. Significant variations in laser power tuning curves could potentially alter the shape of the investigated band, particularly for diffuse bands. In this study, we have developed and introduced an automatic variable laser power attenuator designed to keep the laser power output uniform at a user-defined value across the entire available spectral range. We demonstrated the application of this attenuator in obtaining CIVP spectra of a model compound with a diffuse N-H-N band. This approach enhances the reliability of measuring diffuse bands and overall applicability of cw-QCL.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.