Ying Gu, Guoqing Feng, Peichen Hou, Yanan Zhou, He Zhang, Xiaodong Wang, Bin Luo, Liping Chen
{"title":"Nondestructive detection of saline-alkali stress in wheat (Triticum aestivum L.) seedlings via fusion technology.","authors":"Ying Gu, Guoqing Feng, Peichen Hou, Yanan Zhou, He Zhang, Xiaodong Wang, Bin Luo, Liping Chen","doi":"10.1186/s13007-024-01248-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Wheat (Triticum aestivum L.) is an important grain crops in the world, and its growth and development in different stages is seriously affected by saline-alkali stress, especially in seedling stage. Therefore, nondestructive detection of wheat seedlings under saline-alkali stress can provide more comprehensive technical support for wheat breeding, cultivation and management.</p><p><strong>Results: </strong>This research focused on moisture signal prediction and classification of saline-alkali stress in wheat seedlings using fusion techniques. After collecting and analyzing transverse relaxation time and Multispectral imaging (MSI) information of wheat seedlings, four regression models were used to predict the moisture signal. K-Nearest Neighbor (KNN) and Gaussian-Naïve Bayes (GNB) models were combined with fivefold cross validation to classify the prediction of wheat seedling stress. The results showed that wheat seedlings would increase the bound water content through a certain mechanism to enhance their saline-alkali stress. Under the same Na concentration, the effect of alkali stress on moisture, growth and spectrum of wheat seedlings is stronger than salt stress. The Gradient Boosting Decision Regression Tree model performs the best in predicting wheat moisture signals, with a coefficient of determination (R2P) of 0.98 and a root mean square error of 109.60. It also had a short training time (1.48 s) and an efficient prediction speed (1300 obs/s). The KNN and GNB demonstrated significantly enhanced predictive performance when classifying the fused dataset, compared to using single datasets individually. In particular, the GNB model performing best on the fused dataset, with Precision, Recall, Accuracy, and F1-score of 90.30, 88.89%, 88.90%, and 0.90, respectively.</p><p><strong>Conclusions: </strong>Under the same Na concentration, the effects of alkali stress on water content, spectrum, and growth of wheat were stronger than that of salt stress, which was more unfavorable to the growth of wheat. The fusion of low-field nuclear magnetic resonance and MSI technology can improve the classification of wheat stress, and provide an effective technical method for rapid and accurate monitoring of wheat seedlings under saline-alkali stress.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"136"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01248-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Wheat (Triticum aestivum L.) is an important grain crops in the world, and its growth and development in different stages is seriously affected by saline-alkali stress, especially in seedling stage. Therefore, nondestructive detection of wheat seedlings under saline-alkali stress can provide more comprehensive technical support for wheat breeding, cultivation and management.
Results: This research focused on moisture signal prediction and classification of saline-alkali stress in wheat seedlings using fusion techniques. After collecting and analyzing transverse relaxation time and Multispectral imaging (MSI) information of wheat seedlings, four regression models were used to predict the moisture signal. K-Nearest Neighbor (KNN) and Gaussian-Naïve Bayes (GNB) models were combined with fivefold cross validation to classify the prediction of wheat seedling stress. The results showed that wheat seedlings would increase the bound water content through a certain mechanism to enhance their saline-alkali stress. Under the same Na concentration, the effect of alkali stress on moisture, growth and spectrum of wheat seedlings is stronger than salt stress. The Gradient Boosting Decision Regression Tree model performs the best in predicting wheat moisture signals, with a coefficient of determination (R2P) of 0.98 and a root mean square error of 109.60. It also had a short training time (1.48 s) and an efficient prediction speed (1300 obs/s). The KNN and GNB demonstrated significantly enhanced predictive performance when classifying the fused dataset, compared to using single datasets individually. In particular, the GNB model performing best on the fused dataset, with Precision, Recall, Accuracy, and F1-score of 90.30, 88.89%, 88.90%, and 0.90, respectively.
Conclusions: Under the same Na concentration, the effects of alkali stress on water content, spectrum, and growth of wheat were stronger than that of salt stress, which was more unfavorable to the growth of wheat. The fusion of low-field nuclear magnetic resonance and MSI technology can improve the classification of wheat stress, and provide an effective technical method for rapid and accurate monitoring of wheat seedlings under saline-alkali stress.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.