Breaking the activity-selectivity trade-off of CO2 hydrogenation to light olefins.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiaoyue Wang, Ting Zeng, Xiaohong Guo, Zhiqiang Yan, Hongyan Ban, Ruwei Yao, Congming Li, Xiang-Kui Gu, Mingyue Ding
{"title":"Breaking the activity-selectivity trade-off of CO<sub>2</sub> hydrogenation to light olefins.","authors":"Xiaoyue Wang, Ting Zeng, Xiaohong Guo, Zhiqiang Yan, Hongyan Ban, Ruwei Yao, Congming Li, Xiang-Kui Gu, Mingyue Ding","doi":"10.1073/pnas.2408297121","DOIUrl":null,"url":null,"abstract":"<p><p>Catalytic hydrogenation of CO<sub>2</sub> to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity-selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO<sub>4</sub> + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO<sub>2</sub> conversion of 42%, a CO selectivity of 50%, and a C<sub>2</sub>-C<sub>4</sub><sup>=</sup> selectivity of 83%, resulting in a C<sub>2</sub>-C<sub>4</sub><sup>=</sup> yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO<sub>4</sub> spinel, which were active for the CO<sub>2</sub> deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH<sub>3</sub>OH, respectively, leading to a route for CO<sub>2</sub> hydrogenation to C<sub>2</sub>-C<sub>4</sub><sup>=</sup>, where the kinetics of CO<sub>2</sub> activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C<sub>2</sub>-C<sub>4</sub><sup>=</sup> selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO<sub>4</sub> possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2408297121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity-selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO2 conversion of 42%, a CO selectivity of 50%, and a C2-C4= selectivity of 83%, resulting in a C2-C4= yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO4 spinel, which were active for the CO2 deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH3OH, respectively, leading to a route for CO2 hydrogenation to C2-C4=, where the kinetics of CO2 activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C2-C4= selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO4 possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications.

打破二氧化碳加氢制轻烯烃的活性-选择性权衡。
催化加氢将二氧化碳转化为高附加值燃料和化学品对实现碳中和具有重要意义,但由于活性-选择性的权衡问题,催化性能受到限制。在此,我们设计了 ZnFeAlO4 + SAPO-34 复合催化剂,它可以同时实现 42% 的 CO2 转化率、50% 的 CO 选择性和 83% 的 C2-C4= 选择性,从而使 C2-C4= 收率接近 18%。研究发现,ZnFeAlO4 尖晶石中存在非常规的缺电子四面体 Fe 位点和电子富集的八面体 Zn 位点,这些位点在通过反向水气变换反应将 CO2 脱氧为 CO 以及将 CO 加氢为 CH3OH 的过程中非常活跃,因而具有优异的催化性能、通过改变 SAPO-34 的酸密度,可以改善 CO2 活化的动力学,减少 CO 加氢的传质,并提高 C2-C4= 的选择性。此外,ZnFeAlO4 的尖晶石结构即使在高温下也能很好地稳定铁和锌的活性位点,从而使该工艺的长期稳定性超过 450 小时,显示出大规模应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信