{"title":"The cerebrospinal fluid (CSF)-contacting raphe nucleus (CsfR) in mice","authors":"Si-Yuan Song","doi":"10.1016/j.neulet.2024.137969","DOIUrl":null,"url":null,"abstract":"<div><p>A unique nucleus, the cerebrospinal fluid-contacting nucleus (CsfR), has been identified in the brain parenchyma. This nucleus features neurons with somas located within the parenchyma and processes extending into the cerebrospinal fluid (CSF). This anatomical configuration suggests that the CsfR may serve as a crucial interface between the nervous and body fluid regulatory systems, potentially playing a significant role in overall physiological modulation. Despite its importance, the precise biological significance of the CsfR remains to be fully elucidated. Previous research has characterized the CsfR, providing detailed information on its position, neighboring structures, neuron distribution, and 3D reconstruction in both rats and non-human primates, with stereotaxic coordinates specifically provided for the rat model. Given the relevance of mice as a model organism, especially the C57BL/6J strain, this study aims to explore the existence and morphology of the CsfR in mice. Our findings confirm the presence of the CsfR, consistently located in the ventral gray area of the lower part of the aqueduct and the upper part of the fourth ventricle floor. It is bilaterally symmetrical and heart-shaped in the coronal plane, which differs slightly from the Y-shape observed in coronal sections of rats. This study provides significant references for researchers investigating this specialized nucleus.</p></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"841 ","pages":"Article 137969"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024003471","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A unique nucleus, the cerebrospinal fluid-contacting nucleus (CsfR), has been identified in the brain parenchyma. This nucleus features neurons with somas located within the parenchyma and processes extending into the cerebrospinal fluid (CSF). This anatomical configuration suggests that the CsfR may serve as a crucial interface between the nervous and body fluid regulatory systems, potentially playing a significant role in overall physiological modulation. Despite its importance, the precise biological significance of the CsfR remains to be fully elucidated. Previous research has characterized the CsfR, providing detailed information on its position, neighboring structures, neuron distribution, and 3D reconstruction in both rats and non-human primates, with stereotaxic coordinates specifically provided for the rat model. Given the relevance of mice as a model organism, especially the C57BL/6J strain, this study aims to explore the existence and morphology of the CsfR in mice. Our findings confirm the presence of the CsfR, consistently located in the ventral gray area of the lower part of the aqueduct and the upper part of the fourth ventricle floor. It is bilaterally symmetrical and heart-shaped in the coronal plane, which differs slightly from the Y-shape observed in coronal sections of rats. This study provides significant references for researchers investigating this specialized nucleus.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.