Long-range interactions driving neighboring Fe-N4 sites in Fenton-like reactions for sustainable water decontamination.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zelin Wu, Zhaokun Xiong, Bingkun Huang, Gang Yao, Sihui Zhan, Bo Lai
{"title":"Long-range interactions driving neighboring Fe-N<sub>4</sub> sites in Fenton-like reactions for sustainable water decontamination.","authors":"Zelin Wu, Zhaokun Xiong, Bingkun Huang, Gang Yao, Sihui Zhan, Bo Lai","doi":"10.1038/s41467-024-52074-2","DOIUrl":null,"url":null,"abstract":"<p><p>Actualizing efficient and sustainable environmental catalysis is essential in global water pollution control. The single-atom Fenton-like process, as a promising technique, suffers from reducing potential environmental impacts of single-atom catalysts (SACs) synthesis and modulating functionalized species beyond the first coordination shell. Herein, we devised a high-performance SAC possessing impressive Fenton-like reactivity and extended stability by constructing abundant intrinsic topological defects within carbon planes anchored with Fe-N<sub>4</sub> sites. Coupling atomic Fe-N<sub>4</sub> moieties and adjacent intrinsic defects provides potent synergistic interaction. Density functional theory calculations reveal that the intrinsic defects optimize the d-band electronic structure of neighboring Fe centers through long-range interactions, consequently boosting the intrinsic activity of Fe-N<sub>4</sub> sites. Life cycle assessment and long-term steady operation at the device level indicate promising industrial-scale treatment capability for actual wastewater. This work emphasizes the feasibility of synergistic defect engineering for refining single-atom Fenton-like chemistry and inspires rational materials design toward sustainable environmental remediation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"7775"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377441/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52074-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Actualizing efficient and sustainable environmental catalysis is essential in global water pollution control. The single-atom Fenton-like process, as a promising technique, suffers from reducing potential environmental impacts of single-atom catalysts (SACs) synthesis and modulating functionalized species beyond the first coordination shell. Herein, we devised a high-performance SAC possessing impressive Fenton-like reactivity and extended stability by constructing abundant intrinsic topological defects within carbon planes anchored with Fe-N4 sites. Coupling atomic Fe-N4 moieties and adjacent intrinsic defects provides potent synergistic interaction. Density functional theory calculations reveal that the intrinsic defects optimize the d-band electronic structure of neighboring Fe centers through long-range interactions, consequently boosting the intrinsic activity of Fe-N4 sites. Life cycle assessment and long-term steady operation at the device level indicate promising industrial-scale treatment capability for actual wastewater. This work emphasizes the feasibility of synergistic defect engineering for refining single-atom Fenton-like chemistry and inspires rational materials design toward sustainable environmental remediation.

Abstract Image

长程相互作用驱动 Fenton-like 反应中的邻近 Fe-N4 位点,实现可持续的水净化。
实现高效、可持续的环境催化对全球水污染控制至关重要。单原子 Fenton-like 工艺作为一种前景广阔的技术,在减少单原子催化剂(SACs)合成对环境的潜在影响和调节第一配位层之外的功能化物种方面存在不足。在此,我们通过在锚定了 Fe-N4 位点的碳平面内构建丰富的固有拓扑缺陷,设计出了一种高性能 SAC,它具有令人印象深刻的 Fenton 类反应活性和扩展稳定性。原子 Fe-N4 分子与相邻本征缺陷的耦合提供了强大的协同作用。密度泛函理论计算显示,本征缺陷通过长程相互作用优化了相邻铁中心的 d 波段电子结构,从而提高了 Fe-N4 位点的本征活性。生命周期评估和器件层面的长期稳定运行表明,该器件具有很好的工业规模处理实际废水的能力。这项工作强调了协同缺陷工程在完善单原子芬顿样化学反应方面的可行性,并启发了面向可持续环境修复的合理材料设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信