Muhammad Farhan Khan, Shakeela Parveen, Mehwish Sultana, Peng Zhu, Youhou Xu, Areeba Safdar, Laiba Shafique
{"title":"Evolution and Comparative Genomics of the Transforming Growth Factor-β-Related Proteins in Nile Tilapia.","authors":"Muhammad Farhan Khan, Shakeela Parveen, Mehwish Sultana, Peng Zhu, Youhou Xu, Areeba Safdar, Laiba Shafique","doi":"10.1007/s12033-024-01263-x","DOIUrl":null,"url":null,"abstract":"<p><p>The members of the transforming growth factor β (TGF-β) family of cell signaling polypeptides have garnered a great deal of interest due to its capacity from nematodes to mammals to regulate cell-based activities which control the growth of embryos and sustain tissue homeostasis. The current study designed a computational analysis of the TGF-β protein family for understanding these proteins at the molecular level. This study determined the genomic structure of TGF-β gene family in Nile tilapia for the first time. We chose 33 TGF-β genes for identification and divided them into two subgroups, TGF-like and BMP-like. Moreover, the subcellular localization of the Nile tilapia TGF-β proteins have showed that majority of the members of TGF-β proteins family are present into extracellular matrix and plasma except BMP6, BMP7, and INHAC. All TGF-β proteins were thermostable excluding BMP1. Each protein exhibited basic nature, excluding of BMP1, BMP2, BMP7, BMP10, GDF2, GDF8, GDF11, AMH, INHA, INHBB, and NODAL M. All proteins gave impression of being unstable depending on the instability index, having values exceeding 40 excluding BMP1 and BMP2. Each TGF-β protein was found to be hydrophobic with lowered values of GRAVY. Moreover, every single one of the discovered TGF-β genes had a consistent evolutionary pattern. The TGF-β gene family had eight segmental duplications, and the Ka/Ks ratio demonstrated that purifying selection had an impact on the duplicated gene pairs which have experienced selection pressure. This study highlights important functionality of TGF-β and depicts the demand for further investigation to better understand the role and mechanism of transforming growth factor β in fishes and other species.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3517-3531"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01263-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The members of the transforming growth factor β (TGF-β) family of cell signaling polypeptides have garnered a great deal of interest due to its capacity from nematodes to mammals to regulate cell-based activities which control the growth of embryos and sustain tissue homeostasis. The current study designed a computational analysis of the TGF-β protein family for understanding these proteins at the molecular level. This study determined the genomic structure of TGF-β gene family in Nile tilapia for the first time. We chose 33 TGF-β genes for identification and divided them into two subgroups, TGF-like and BMP-like. Moreover, the subcellular localization of the Nile tilapia TGF-β proteins have showed that majority of the members of TGF-β proteins family are present into extracellular matrix and plasma except BMP6, BMP7, and INHAC. All TGF-β proteins were thermostable excluding BMP1. Each protein exhibited basic nature, excluding of BMP1, BMP2, BMP7, BMP10, GDF2, GDF8, GDF11, AMH, INHA, INHBB, and NODAL M. All proteins gave impression of being unstable depending on the instability index, having values exceeding 40 excluding BMP1 and BMP2. Each TGF-β protein was found to be hydrophobic with lowered values of GRAVY. Moreover, every single one of the discovered TGF-β genes had a consistent evolutionary pattern. The TGF-β gene family had eight segmental duplications, and the Ka/Ks ratio demonstrated that purifying selection had an impact on the duplicated gene pairs which have experienced selection pressure. This study highlights important functionality of TGF-β and depicts the demand for further investigation to better understand the role and mechanism of transforming growth factor β in fishes and other species.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.