Emmanuel Ehinmitan, Turoop Losenge, Edward Mamati, Victoria Ngumi, Patrick Juma, Beenzu Siamalube
{"title":"BioSolutions for Green Agriculture: Unveiling the Diverse Roles of Plant Growth-Promoting Rhizobacteria.","authors":"Emmanuel Ehinmitan, Turoop Losenge, Edward Mamati, Victoria Ngumi, Patrick Juma, Beenzu Siamalube","doi":"10.1155/2024/6181491","DOIUrl":null,"url":null,"abstract":"<p><p>The extensive use of chemical pesticides and fertilizers in conventional agriculture has raised significant environmental and health issues, including the emergence of resistant pests and pathogens. Plant growth-promoting rhizobacteria (PGPR) present a sustainable alternative, offering dual benefits as biofertilizers and biocontrol agents. This review delves into the mechanisms by which PGPR enhance plant growth, including nutrient solubilization, phytohormone production, and pathogen suppression. PGPR's commercial viability and application, particularly under abiotic stress conditions, are also examined. PGPR improves plant growth directly by enhancing nutrient uptake and producing growth-promoting substances and indirectly by inhibiting phytopathogens through mechanisms such as siderophore production and the secretion of lytic enzymes. Despite their potential, the commercialization of PGPR faces challenges, including strain specificity, formulation stability, and regulatory barriers. The review highlights the need for ongoing research to deepen our understanding of plant-microbe interactions and develop more robust PGPR formulations. Addressing these challenges will be crucial for integrating PGPR into mainstream agricultural practices and reducing reliance on synthetic agrochemicals. The successful adoption of PGPR could lead to more sustainable agricultural practices, promoting healthier crops and ecosystems.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/6181491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The extensive use of chemical pesticides and fertilizers in conventional agriculture has raised significant environmental and health issues, including the emergence of resistant pests and pathogens. Plant growth-promoting rhizobacteria (PGPR) present a sustainable alternative, offering dual benefits as biofertilizers and biocontrol agents. This review delves into the mechanisms by which PGPR enhance plant growth, including nutrient solubilization, phytohormone production, and pathogen suppression. PGPR's commercial viability and application, particularly under abiotic stress conditions, are also examined. PGPR improves plant growth directly by enhancing nutrient uptake and producing growth-promoting substances and indirectly by inhibiting phytopathogens through mechanisms such as siderophore production and the secretion of lytic enzymes. Despite their potential, the commercialization of PGPR faces challenges, including strain specificity, formulation stability, and regulatory barriers. The review highlights the need for ongoing research to deepen our understanding of plant-microbe interactions and develop more robust PGPR formulations. Addressing these challenges will be crucial for integrating PGPR into mainstream agricultural practices and reducing reliance on synthetic agrochemicals. The successful adoption of PGPR could lead to more sustainable agricultural practices, promoting healthier crops and ecosystems.
期刊介绍:
International Journal of Microbiology is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies on microorganisms and their interaction with hosts and the environment. The journal covers all microbes, including bacteria, fungi, viruses, archaea, and protozoa. Basic science will be considered, as well as medical and applied research.