Enhanced prediction of atrial fibrillation risk using proteomic markers: a comparative analysis with clinical and polygenic risk scores.

IF 5.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Heart Pub Date : 2024-10-10 DOI:10.1136/heartjnl-2024-324274
Mengyi Liu, Yuanyuan Zhang, Ziliang Ye, Panpan He, Chun Zhou, Sisi Yang, Yanjun Zhang, Xiaoqin Gan, Xianhui Qin
{"title":"Enhanced prediction of atrial fibrillation risk using proteomic markers: a comparative analysis with clinical and polygenic risk scores.","authors":"Mengyi Liu, Yuanyuan Zhang, Ziliang Ye, Panpan He, Chun Zhou, Sisi Yang, Yanjun Zhang, Xiaoqin Gan, Xianhui Qin","doi":"10.1136/heartjnl-2024-324274","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Proteomic biomarkers have shown promise in predicting various cardiovascular conditions, but their utility in assessing the risk of atrial fibrillation (AF) remains unclear. This study aimed to develop and validate a protein-based risk score for predicting incident AF and to compare its predictive performance with traditional clinical risk factors and polygenic risk scores in a large cohort from the UK Biobank.</p><p><strong>Methods: </strong>We analysed data from 36 129 white British individuals without prior AF, assessing 2923 plasma proteins using the Olink Explore 3072 assay. The cohort was divided into a training set (70%) and a test set (30%) to develop and validate a protein risk score for AF. We compared the predictive performance of this score with the HARMS<sub>2</sub>-AF risk model and a polygenic risk score.</p><p><strong>Results: </strong>Over an average follow-up of 11.8 years, 2450 incident AF cases were identified. A 47-protein risk score was developed, with N-terminal prohormone of brain natriuretic peptide (NT-proBNP) being the most significant predictor. In the test set, the protein risk score (per SD increment, HR 1.94; 95% CI 1.83 to 2.05) and NT-proBNP alone (HR 1.80; 95% CI 1.70 to 1.91) demonstrated superior predictive performance (C-statistic: 0.802 and 0.785, respectively) compared with HARMS<sub>2</sub>-AF and polygenic risk scores (C-statistic: 0.751 and 0.748, respectively).</p><p><strong>Conclusions: </strong>A protein-based risk score, particularly incorporating NT-proBNP, offers superior predictive value for AF risk over traditional clinical and polygenic risk scores, highlighting the potential for proteomic data in AF risk stratification.</p>","PeriodicalId":12835,"journal":{"name":"Heart","volume":" ","pages":"1270-1276"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/heartjnl-2024-324274","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Proteomic biomarkers have shown promise in predicting various cardiovascular conditions, but their utility in assessing the risk of atrial fibrillation (AF) remains unclear. This study aimed to develop and validate a protein-based risk score for predicting incident AF and to compare its predictive performance with traditional clinical risk factors and polygenic risk scores in a large cohort from the UK Biobank.

Methods: We analysed data from 36 129 white British individuals without prior AF, assessing 2923 plasma proteins using the Olink Explore 3072 assay. The cohort was divided into a training set (70%) and a test set (30%) to develop and validate a protein risk score for AF. We compared the predictive performance of this score with the HARMS2-AF risk model and a polygenic risk score.

Results: Over an average follow-up of 11.8 years, 2450 incident AF cases were identified. A 47-protein risk score was developed, with N-terminal prohormone of brain natriuretic peptide (NT-proBNP) being the most significant predictor. In the test set, the protein risk score (per SD increment, HR 1.94; 95% CI 1.83 to 2.05) and NT-proBNP alone (HR 1.80; 95% CI 1.70 to 1.91) demonstrated superior predictive performance (C-statistic: 0.802 and 0.785, respectively) compared with HARMS2-AF and polygenic risk scores (C-statistic: 0.751 and 0.748, respectively).

Conclusions: A protein-based risk score, particularly incorporating NT-proBNP, offers superior predictive value for AF risk over traditional clinical and polygenic risk scores, highlighting the potential for proteomic data in AF risk stratification.

利用蛋白质组标记物增强心房颤动风险预测:与临床和多基因风险评分的比较分析。
背景:蛋白质组生物标志物有望预测各种心血管疾病,但它们在评估心房颤动(房颤)风险方面的作用仍不明确。本研究旨在开发和验证一种基于蛋白质的风险评分,用于预测心房颤动的发生,并在英国生物库的大型队列中将其预测性能与传统的临床风险因素和多基因风险评分进行比较:我们分析了 36 129 名无房颤史的英国白人的数据,使用 Olink Explore 3072 检测法评估了 2923 种血浆蛋白。该群体被分为训练集(70%)和测试集(30%),用于开发和验证房颤的蛋白质风险评分。我们将该评分的预测性能与 HARMS2-AF 风险模型和多基因风险评分进行了比较:结果:在平均 11.8 年的随访期间,共发现了 2450 例房颤病例。结果:在平均 11.8 年的随访中,共发现了 2450 例房颤病例,并得出了 47 种蛋白风险评分,其中脑钠肽 N 端前体(NT-proBNP)是最重要的预测因子。在测试集中,与 HARMS2-AF 和多基因风险评分(C 统计量分别为 0.751 和 0.748)相比,蛋白质风险评分(每 SD 增量,HR 1.94;95% CI 1.83 至 2.05)和单独的 NT-proBNP(HR 1.80;95% CI 1.70 至 1.91)显示出更优越的预测性能(C 统计量分别为 0.802 和 0.785):结论:与传统的临床和多基因风险评分相比,基于蛋白质的风险评分,尤其是包含 NT-proBNP 的评分,对房颤风险具有更高的预测价值,凸显了蛋白质组数据在房颤风险分层中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heart
Heart 医学-心血管系统
CiteScore
10.30
自引率
5.30%
发文量
320
审稿时长
3-6 weeks
期刊介绍: Heart is an international peer reviewed journal that keeps cardiologists up to date with important research advances in cardiovascular disease. New scientific developments are highlighted in editorials and put in context with concise review articles. There is one free Editor’s Choice article in each issue, with open access options available to authors for all articles. Education in Heart articles provide a comprehensive, continuously updated, cardiology curriculum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信