Ekaterina Evgenyevna Tyagunova, Alexander Sergeevich Zakharov, Galina Valerievna Pavlova, Daria Alexandrovna Ogarkova, Natalia Alexandrovna Zhuchenko, Vladimir Alexeyevich Gushchin
{"title":"A Method for Predicting Allelic Variants of Single Nucleotide Polymorphisms.","authors":"Ekaterina Evgenyevna Tyagunova, Alexander Sergeevich Zakharov, Galina Valerievna Pavlova, Daria Alexandrovna Ogarkova, Natalia Alexandrovna Zhuchenko, Vladimir Alexeyevich Gushchin","doi":"10.2174/0115680266328330240828040922","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Single nucleotide polymorphisms (SNPs) are pivotal in clinical genetics, serving to link genotypes with disease susceptibility and response to environmental factors, including pharmacogenetics. They also play a crucial role in population genetics for mapping the human genome and localizing genes. Despite their utility, challenges arise when molecular genetic studies yield insufficient or uninformative data, particularly for socially significant diseases. This study aims to address these gaps by proposing a method to predict allelic variants of SNPs.</p><p><strong>Method: </strong>Using quantitative PCR and analyzing body composition data from 150 patients with their voluntary informed consent, we employed IBM SPSS Statistics 29.0 for data analysis. Our prototype formula, exemplified by allelic variant ADRB2 (rs1042713) = 0.257 + 0.639 * allelic variant ADRB2 (rs1042714) - 0.314 * allelic variant ADRB3 (rs4994) + 0.191 * allelic variant PPARA (rs4253778) - 0.218 * allelic variant PPARD (rs2016520) + 0.027 * body weight + 0.00001 * body weight², demonstrates the feasibility of predicting SNP allelic variants.</p><p><strong>Results: </strong>This method holds promise for diverse diseases, including those of significant social impact, due to its potential to streamline and economize molecular genetic research. Its ability to stratify disease risk in the absence of complete SNP data makes it particularly compelling for clinical and laboratory geneticists.</p><p><strong>Conclusion: </strong>However, its translation into clinical practice necessitates the establishment of a comprehensive SNP database, especially for frequently analyzed SNPs within the implementing institution.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266328330240828040922","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Single nucleotide polymorphisms (SNPs) are pivotal in clinical genetics, serving to link genotypes with disease susceptibility and response to environmental factors, including pharmacogenetics. They also play a crucial role in population genetics for mapping the human genome and localizing genes. Despite their utility, challenges arise when molecular genetic studies yield insufficient or uninformative data, particularly for socially significant diseases. This study aims to address these gaps by proposing a method to predict allelic variants of SNPs.
Method: Using quantitative PCR and analyzing body composition data from 150 patients with their voluntary informed consent, we employed IBM SPSS Statistics 29.0 for data analysis. Our prototype formula, exemplified by allelic variant ADRB2 (rs1042713) = 0.257 + 0.639 * allelic variant ADRB2 (rs1042714) - 0.314 * allelic variant ADRB3 (rs4994) + 0.191 * allelic variant PPARA (rs4253778) - 0.218 * allelic variant PPARD (rs2016520) + 0.027 * body weight + 0.00001 * body weight², demonstrates the feasibility of predicting SNP allelic variants.
Results: This method holds promise for diverse diseases, including those of significant social impact, due to its potential to streamline and economize molecular genetic research. Its ability to stratify disease risk in the absence of complete SNP data makes it particularly compelling for clinical and laboratory geneticists.
Conclusion: However, its translation into clinical practice necessitates the establishment of a comprehensive SNP database, especially for frequently analyzed SNPs within the implementing institution.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.