Melissa Acosta-Plasencia, Yangyi He, Daniel Martínez, Juan Pablo Orozco, Antonio Carrasco, Antonio Altuna-Coy, Tianmiao Yang, Tania Díaz, Laureano Molins, Ricard Ramos, Ramón M Marrades, Alfons Navarro
{"title":"Selection of the Most Suitable Culture Medium for Patient-Derived Lung Cancer Organoids.","authors":"Melissa Acosta-Plasencia, Yangyi He, Daniel Martínez, Juan Pablo Orozco, Antonio Carrasco, Antonio Altuna-Coy, Tianmiao Yang, Tania Díaz, Laureano Molins, Ricard Ramos, Ramón M Marrades, Alfons Navarro","doi":"10.1159/000541274","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Patient-derived organoids have emerged as a promising in vitro model for precision medicine, particularly in cancer, but also in noncancer-related diseases. However, the optimal culture medium for culturing patient-derived lung organoids has not yet been agreed upon. This study aimed to shed light on the optimal selection of a culture media for developing studies using patient-derived lung organoids.</p><p><strong>Methods: </strong>Tumor and normal paired tissue from 71 resected non-small cell lung cancer patients were processed for organoid culture. Lung cancer organoids (LCOs) were derived from tumor tissue and normal lung organoids (LNOs) from nonneoplastic lung tissue. Three different culture media were compared: permissive culture medium (PCM), limited culture medium (LCM), and minimum basal medium (MBM). We assessed their effectiveness in establishing organoid cultures, promoting organoid growth and viability, and compared their differential phenotypic characteristics.</p><p><strong>Results: </strong>While PCM was associated with the highest success rate and useful for long-term expansion, MBM was the best option to avoid normal organoid overgrowth in the organoid culture. The density, size, and viability of LNOs were reduced using LCM and severely affected with MBM. LNOs cultured in PCM tend to differentiate to bronchospheres, while alveolosphere differentiation can be observed in those cultured with LCM. The morphological phenotype of LCO was influenced by the culture media of election. Mesenchymal cell overgrowth was observed when LCM was used.</p><p><strong>Conclusion: </strong>This work highlights the importance of considering the research objectives when selecting the most suitable culture medium for growing patient-derived lung organoids.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000541274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Patient-derived organoids have emerged as a promising in vitro model for precision medicine, particularly in cancer, but also in noncancer-related diseases. However, the optimal culture medium for culturing patient-derived lung organoids has not yet been agreed upon. This study aimed to shed light on the optimal selection of a culture media for developing studies using patient-derived lung organoids.
Methods: Tumor and normal paired tissue from 71 resected non-small cell lung cancer patients were processed for organoid culture. Lung cancer organoids (LCOs) were derived from tumor tissue and normal lung organoids (LNOs) from nonneoplastic lung tissue. Three different culture media were compared: permissive culture medium (PCM), limited culture medium (LCM), and minimum basal medium (MBM). We assessed their effectiveness in establishing organoid cultures, promoting organoid growth and viability, and compared their differential phenotypic characteristics.
Results: While PCM was associated with the highest success rate and useful for long-term expansion, MBM was the best option to avoid normal organoid overgrowth in the organoid culture. The density, size, and viability of LNOs were reduced using LCM and severely affected with MBM. LNOs cultured in PCM tend to differentiate to bronchospheres, while alveolosphere differentiation can be observed in those cultured with LCM. The morphological phenotype of LCO was influenced by the culture media of election. Mesenchymal cell overgrowth was observed when LCM was used.
Conclusion: This work highlights the importance of considering the research objectives when selecting the most suitable culture medium for growing patient-derived lung organoids.