{"title":"CircRNA-Cacna1d Plays a Critical Role in Sepsis-induced Lung Injury by Sponging miRNA-185-5p.","authors":"Jiajia Wang, Jinhui Gao, Ling Ding, Xuanzhe Yang, Dong Zheng, Yuanyuan Zeng, Jianjie Zhu, Wei Lei, Cheng Chen, Zeyi Liu, Jian-An Huang","doi":"10.1165/rcmb.2024-0067OC","DOIUrl":null,"url":null,"abstract":"<p><p>The role of circRNAs in sepsis-induced lung injury is not clear. This study investigated the role and molecular mechanism of a novel circRNA in sepsis-induced lung injury and explored its prognostic value in sepsis patients. In this study, aberrant circRNA expression profiling in lung tissues from mice with sepsis-induced lung injury was analyzed using high-throughput sequencing. CircRNA-Cacna1d was verified by quantitative real-time polymerase chain reaction, and its biological function in sepsis-induced lung injury was validated <i>in vitro</i> and <i>in vivo</i>. The interactions among circRNA-Cacna1d, miRNAs, and their downstream genes were verified. Furthermore, the clinical value of circRNA-Cacna1d in peripheral blood from sepsis patients was also evaluated. We found that circRNA-Cacna1d expression was significantly increased in lung tissues of sepsis mice and microvascular endothelial cells after lipopolysaccharide (LPS) challenge. CircRNA-Cacna1d knockdown alleviated inflammatory response and ameliorated the permeability of vascular endothelium, thereby mitigating sepsis-induced lung injury and significantly improving the survival rate of sepsis mice. Mechanistically, circRNA-Cacna1d directly interacted with miRNA-185-5p and functioned as a miRNA sponge to regulate the RhoA/ROCK1 signaling pathway. The expression level of circRNA-Cacna1d in patients with early sepsis was significantly higher than that in the healthy controls. Higher levels of circRNA-Cacna1d in sepsis patients were associated with increased disease severity and poorer outcomes. In conclusions, circRNA-Cacna1d may play a role in sepsis-induced lung injury by regulating the RhoA/ROCK1 axis by acting as miRNA-185-5p sponge. CircRNA-Cacna1d is a potential therapeutic target for sepsis-induced lung injury and a prognostic biomarker in sepsis.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0067OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The role of circRNAs in sepsis-induced lung injury is not clear. This study investigated the role and molecular mechanism of a novel circRNA in sepsis-induced lung injury and explored its prognostic value in sepsis patients. In this study, aberrant circRNA expression profiling in lung tissues from mice with sepsis-induced lung injury was analyzed using high-throughput sequencing. CircRNA-Cacna1d was verified by quantitative real-time polymerase chain reaction, and its biological function in sepsis-induced lung injury was validated in vitro and in vivo. The interactions among circRNA-Cacna1d, miRNAs, and their downstream genes were verified. Furthermore, the clinical value of circRNA-Cacna1d in peripheral blood from sepsis patients was also evaluated. We found that circRNA-Cacna1d expression was significantly increased in lung tissues of sepsis mice and microvascular endothelial cells after lipopolysaccharide (LPS) challenge. CircRNA-Cacna1d knockdown alleviated inflammatory response and ameliorated the permeability of vascular endothelium, thereby mitigating sepsis-induced lung injury and significantly improving the survival rate of sepsis mice. Mechanistically, circRNA-Cacna1d directly interacted with miRNA-185-5p and functioned as a miRNA sponge to regulate the RhoA/ROCK1 signaling pathway. The expression level of circRNA-Cacna1d in patients with early sepsis was significantly higher than that in the healthy controls. Higher levels of circRNA-Cacna1d in sepsis patients were associated with increased disease severity and poorer outcomes. In conclusions, circRNA-Cacna1d may play a role in sepsis-induced lung injury by regulating the RhoA/ROCK1 axis by acting as miRNA-185-5p sponge. CircRNA-Cacna1d is a potential therapeutic target for sepsis-induced lung injury and a prognostic biomarker in sepsis.
期刊介绍:
The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.