{"title":"Serum arsenic augments gallstone risk in Henan rural cohort with multiple metal exposure.","authors":"Qian Zhang, Yating Li, Han Hu, Meichen Tian, Tingting Cao, Hui Wu, Weidong Wu, Guofu Zhang","doi":"10.1016/j.scitotenv.2024.175991","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>People are exposed to metals in various ways during their daily lives. However, the association between metal exposure and gallstones remains unclear.</p><p><strong>Objectives: </strong>To investigate the relationship between serum elemental concentrations and the risk of gallstones.</p><p><strong>Methods: </strong>Participants (n = 4204) were drawn from the Henan Rural Cohort. Gallstone diagnosis was based on abdominal ultrasound reports during follow-up. Baseline serum elemental concentrations were measured using inductively coupled plasma mass spectrometry. The relationship between serum elemental levels and gallstones was evaluated using robust Poisson regression, restricted cubic spline (RCS), quantile g-computation (Qgcomp), grouped weighted quantile sum (GWQS) and Bayesian kernel machine regression (BKMR).</p><p><strong>Results: </strong>121 individuals were diagnosed with gallstone (incidence rate of 2.88 %). In robust Poisson regression, after adjusting for confounding factors, the highest quartile of arsenic concentration compared to the lowest quartile had a 1.90 times higher relative risk (RR) [95 % confidence interval (CI): 1.05, 3.44]. Conversely, the highest quartile of zinc concentration compared to the lowest quartile had a 0.50 times lower RR (95 % CI: 0.28, 0.89). RCS showed an approximately \"S\"-shaped nonlinear relationship between serum arsenic levels and gallstones, with increasing arsenic concentration leading to a higher risk of gallstones; however, the risk plateaued when arsenic concentration exceeded 0.62 μg/L. Both the Qgcomp and GWQS indicated that arsenic plays a significant role in increasing the risk of gallstones, whereas zinc plays a significant role in reducing the risk of gallstones. BKMR showed that raising arsenic exposure from the 25th to the 75th percentile increased the risk of gallstones, while raising serum zinc concentration reduced it.</p><p><strong>Conclusions: </strong>Higher serum arsenic concentration increases the risk of gallstones, whereas higher zinc concentration may reduce the risk. Effective prevention of gallstones may require further reduction of arsenic exposure and appropriate increases in zinc intake.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175991","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: People are exposed to metals in various ways during their daily lives. However, the association between metal exposure and gallstones remains unclear.
Objectives: To investigate the relationship between serum elemental concentrations and the risk of gallstones.
Methods: Participants (n = 4204) were drawn from the Henan Rural Cohort. Gallstone diagnosis was based on abdominal ultrasound reports during follow-up. Baseline serum elemental concentrations were measured using inductively coupled plasma mass spectrometry. The relationship between serum elemental levels and gallstones was evaluated using robust Poisson regression, restricted cubic spline (RCS), quantile g-computation (Qgcomp), grouped weighted quantile sum (GWQS) and Bayesian kernel machine regression (BKMR).
Results: 121 individuals were diagnosed with gallstone (incidence rate of 2.88 %). In robust Poisson regression, after adjusting for confounding factors, the highest quartile of arsenic concentration compared to the lowest quartile had a 1.90 times higher relative risk (RR) [95 % confidence interval (CI): 1.05, 3.44]. Conversely, the highest quartile of zinc concentration compared to the lowest quartile had a 0.50 times lower RR (95 % CI: 0.28, 0.89). RCS showed an approximately "S"-shaped nonlinear relationship between serum arsenic levels and gallstones, with increasing arsenic concentration leading to a higher risk of gallstones; however, the risk plateaued when arsenic concentration exceeded 0.62 μg/L. Both the Qgcomp and GWQS indicated that arsenic plays a significant role in increasing the risk of gallstones, whereas zinc plays a significant role in reducing the risk of gallstones. BKMR showed that raising arsenic exposure from the 25th to the 75th percentile increased the risk of gallstones, while raising serum zinc concentration reduced it.
Conclusions: Higher serum arsenic concentration increases the risk of gallstones, whereas higher zinc concentration may reduce the risk. Effective prevention of gallstones may require further reduction of arsenic exposure and appropriate increases in zinc intake.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.