Wenqian Xu, Yangbing Xu, Ruixian Sun, Elvira Rey Redondo, Ka Kiu Leung, Siu Hei Wan, Jiying Li, Charmaine C M Yung
{"title":"Revealing the intricate temporal dynamics and adaptive responses of prokaryotic and eukaryotic microbes in the coastal South China Sea.","authors":"Wenqian Xu, Yangbing Xu, Ruixian Sun, Elvira Rey Redondo, Ka Kiu Leung, Siu Hei Wan, Jiying Li, Charmaine C M Yung","doi":"10.1016/j.scitotenv.2024.176019","DOIUrl":null,"url":null,"abstract":"<p><p>This comprehensive two-year investigation in the coastal South China Sea has advanced our understanding of marine microbes at both community and genomic levels. By combining metagenomics and metatranscriptomics, we have revealed the intricate temporal dynamics and remarkable adaptability of microbial communities and phytoplankton metagenome-assembled genomes (MAGs) in response to environmental fluctuations. We observed distinct seasonal shifts in microbial community composition and function: cyanobacteria were predominant during warmer months, whereas photosynthetic protists were more abundant during colder seasons. Notably, metabolic marker KOs of photosynthesis were consistently active throughout the year, underscoring the persistent role of these processes irrespective of seasonal changes. Our analysis reveals that environmental parameters such as temperature, salinity, and nitrate concentrations profoundly influence microbial community composition, while temperature and silicate have emerged as crucial factors shaping their functional traits. Through the recovery and analysis of 37 phytoplankton MAGs, encompassing nine prokaryotic cyanobacteria and 28 eukaryotic protists from diverse phyla, we have gained insights into their genetic diversity and metabolic capabilities. Distinct profiles of photosynthesis-related pathways including carbon fixation, carotenoid biosynthesis, photosynthesis-antenna proteins, and photosynthesis among the MAGs indicated their genetic adaptations to changing environmental conditions. This study not only enhances our understanding of microbial dynamics in coastal marine ecosystems but also sheds light on the ecological roles and adaptive responses of different microbial groups to environmental changes.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.176019","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This comprehensive two-year investigation in the coastal South China Sea has advanced our understanding of marine microbes at both community and genomic levels. By combining metagenomics and metatranscriptomics, we have revealed the intricate temporal dynamics and remarkable adaptability of microbial communities and phytoplankton metagenome-assembled genomes (MAGs) in response to environmental fluctuations. We observed distinct seasonal shifts in microbial community composition and function: cyanobacteria were predominant during warmer months, whereas photosynthetic protists were more abundant during colder seasons. Notably, metabolic marker KOs of photosynthesis were consistently active throughout the year, underscoring the persistent role of these processes irrespective of seasonal changes. Our analysis reveals that environmental parameters such as temperature, salinity, and nitrate concentrations profoundly influence microbial community composition, while temperature and silicate have emerged as crucial factors shaping their functional traits. Through the recovery and analysis of 37 phytoplankton MAGs, encompassing nine prokaryotic cyanobacteria and 28 eukaryotic protists from diverse phyla, we have gained insights into their genetic diversity and metabolic capabilities. Distinct profiles of photosynthesis-related pathways including carbon fixation, carotenoid biosynthesis, photosynthesis-antenna proteins, and photosynthesis among the MAGs indicated their genetic adaptations to changing environmental conditions. This study not only enhances our understanding of microbial dynamics in coastal marine ecosystems but also sheds light on the ecological roles and adaptive responses of different microbial groups to environmental changes.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.