Low-Scaling, Efficient and Memory Optimized Computation of Nuclear Magnetic Resonance Shieldings within the Random Phase Approximation Using Cholesky-Decomposed Densities and an Attenuated Coulomb Metric.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-09-19 Epub Date: 2024-09-06 DOI:10.1021/acs.jpca.4c02773
Viktoria Drontschenko, Christian Ochsenfeld
{"title":"Low-Scaling, Efficient and Memory Optimized Computation of Nuclear Magnetic Resonance Shieldings within the Random Phase Approximation Using Cholesky-Decomposed Densities and an Attenuated Coulomb Metric.","authors":"Viktoria Drontschenko, Christian Ochsenfeld","doi":"10.1021/acs.jpca.4c02773","DOIUrl":null,"url":null,"abstract":"<p><p>An efficient method for the computation of nuclear magnetic resonance (NMR) shielding tensors within the random phase approximation (RPA) is presented based on our recently introduced resolution-of-the-identity (RI) atomic orbital RPA NMR method [Drontschenko, V. <i>J. Chem. Theory Comput.</i> 2023, 19, 7542-7554] utilizing Cholesky decomposed density type matrices and employing an attenuated Coulomb RI metric. The introduced sparsity is efficiently exploited using sparse matrix algebra. This allows for an efficient and low-scaling computation of RPA NMR shielding tensors. Furthermore, we introduce a batching method for the computation of memory demanding intermediates that accounts for their sparsity. This extends the applicability of our method to even larger systems that would have been out of reach before, such as, e.g., a DNA strand with 260 atoms and 3408 atomic orbital basis functions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c02773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient method for the computation of nuclear magnetic resonance (NMR) shielding tensors within the random phase approximation (RPA) is presented based on our recently introduced resolution-of-the-identity (RI) atomic orbital RPA NMR method [Drontschenko, V. J. Chem. Theory Comput. 2023, 19, 7542-7554] utilizing Cholesky decomposed density type matrices and employing an attenuated Coulomb RI metric. The introduced sparsity is efficiently exploited using sparse matrix algebra. This allows for an efficient and low-scaling computation of RPA NMR shielding tensors. Furthermore, we introduce a batching method for the computation of memory demanding intermediates that accounts for their sparsity. This extends the applicability of our method to even larger systems that would have been out of reach before, such as, e.g., a DNA strand with 260 atoms and 3408 atomic orbital basis functions.

Abstract Image

利用乔尔斯基分解密度和衰减库仑度量,在随机相近似法中对核磁共振屏蔽进行低缩放、高效和内存优化计算。
本文介绍了一种在随机相近似(RPA)中计算核磁共振(NMR)屏蔽张量的高效方法,该方法基于我们最近推出的原子轨道 RPA NMR 方法[Drontschenko, V. J. Chem. Theory Comput.利用稀疏矩阵代数有效地利用了引入的稀疏性。这使得 RPA NMR 屏蔽张量的计算变得高效、低缩放。此外,我们还引入了一种批处理方法,用于计算对内存要求较高的中间产物,这种方法考虑到了它们的稀疏性。这就将我们方法的适用性扩展到了以前无法企及的更大系统,例如,具有 260 个原子和 3408 个原子轨道基函数的 DNA 链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信