{"title":"Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels.","authors":"Yi-Chuan Lin, Hong-Hsu Chen, Chien-Wei Chu, Li-Hsien Yeh","doi":"10.1021/acs.nanolett.4c03836","DOIUrl":null,"url":null,"abstract":"<p><p>Developing a nanofluidic membrane with simultaneously enhanced ion selectivity and permeability for high-performance osmotic energy conversion has largely been unexplored. Here, we tackle this issue by the confinement of highly space-charged hydrogels within an orderedly aligned nanochannel array membrane. The nanoconfinement effect endows the hydrogel-based membrane with excellent antiswelling property. Furthermore, experimental and simulation results demonstrate that such a nanoconfined hydrogel membrane exhibits massively enhanced cation selectivity and ion transport properties. Consequently, an amazingly high power density up to ∼52.1 W/m<sup>2</sup> with an unprecedented energy conversion efficiency of 37.5% can be reached by mixing simulated salt-lake water (5 M NaCl) and river water (0.01 M NaCl). Both efficiency indexes surpass those of most of the state-of-the-art nanofluidic membranes. This work offers insights into the design of highly ion-selective membranes to achieve ultrafast ion transport and high-performance osmotic energy harvesting.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"11756-11762"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03836","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a nanofluidic membrane with simultaneously enhanced ion selectivity and permeability for high-performance osmotic energy conversion has largely been unexplored. Here, we tackle this issue by the confinement of highly space-charged hydrogels within an orderedly aligned nanochannel array membrane. The nanoconfinement effect endows the hydrogel-based membrane with excellent antiswelling property. Furthermore, experimental and simulation results demonstrate that such a nanoconfined hydrogel membrane exhibits massively enhanced cation selectivity and ion transport properties. Consequently, an amazingly high power density up to ∼52.1 W/m2 with an unprecedented energy conversion efficiency of 37.5% can be reached by mixing simulated salt-lake water (5 M NaCl) and river water (0.01 M NaCl). Both efficiency indexes surpass those of most of the state-of-the-art nanofluidic membranes. This work offers insights into the design of highly ion-selective membranes to achieve ultrafast ion transport and high-performance osmotic energy harvesting.
开发一种同时具有增强离子选择性和渗透性的纳米流体膜以实现高性能渗透能量转换,在很大程度上还没有得到探索。在这里,我们通过在有序排列的纳米通道阵列膜内限制高空间电荷水凝胶来解决这一问题。纳米约束效应使水凝胶膜具有优异的抗溶胀特性。此外,实验和模拟结果表明,这种纳米融合水凝胶膜的阳离子选择性和离子传输特性大大增强。因此,通过混合模拟盐湖水(5 M NaCl)和河水(0.01 M NaCl),可以达到令人惊叹的高达 ∼52.1 W/m2 的功率密度和前所未有的 37.5% 能量转换效率。这两项效率指标都超过了大多数最先进的纳米流体膜。这项工作为设计高离子选择性膜以实现超快离子传输和高性能渗透能量收集提供了启示。
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.