Dominant Scattering Mechanisms in Limiting the Electron Mobility of Scandium Nitride.

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
ACS Catalysis Pub Date : 2024-09-18 Epub Date: 2024-09-06 DOI:10.1021/acs.nanolett.4c02920
Sourav Rudra, Dheemahi Rao, Samuel Poncé, Bivas Saha
{"title":"Dominant Scattering Mechanisms in Limiting the Electron Mobility of Scandium Nitride.","authors":"Sourav Rudra, Dheemahi Rao, Samuel Poncé, Bivas Saha","doi":"10.1021/acs.nanolett.4c02920","DOIUrl":null,"url":null,"abstract":"<p><p>Electron mobility in nitride semiconductors is limited by electron-phonon, defect, grain-boundary, and dislocation scatterings. Scandium nitride (ScN), an emerging rocksalt indirect bandgap semiconductor, exhibits varying electron mobilities depending on growth conditions. Since achieving high mobility is crucial for ScN's device applications, a microscopic understanding of different scattering mechanisms is extremely important. Utilizing the <i>ab initio</i> Boltzmann transport formalism and experimental measurements, here we show the hierarchy of various scattering processes in restricting the electron mobility of ScN. Calculations unveil that though Fröhlich interactions set an intrinsic upper bound for ScN's electron mobility of ∼524 cm<sup>2</sup>/V·s at room temperature, ionized-impurity and grain-boundary scatterings significantly reduce mobility. The experimental temperature dependence of mobilities is captured well considering both nitrogen-vacancy and oxygen-substitutional impurities with appropriate ratios, and room-temperature doping dependency agrees well with the empirical Caughey-Thomas model. Furthermore, we suggest modulation doping and polar-discontinuity doping to reduce ionized-impurity scattering in achieving a high-mobility ScN for device applications.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02920","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electron mobility in nitride semiconductors is limited by electron-phonon, defect, grain-boundary, and dislocation scatterings. Scandium nitride (ScN), an emerging rocksalt indirect bandgap semiconductor, exhibits varying electron mobilities depending on growth conditions. Since achieving high mobility is crucial for ScN's device applications, a microscopic understanding of different scattering mechanisms is extremely important. Utilizing the ab initio Boltzmann transport formalism and experimental measurements, here we show the hierarchy of various scattering processes in restricting the electron mobility of ScN. Calculations unveil that though Fröhlich interactions set an intrinsic upper bound for ScN's electron mobility of ∼524 cm2/V·s at room temperature, ionized-impurity and grain-boundary scatterings significantly reduce mobility. The experimental temperature dependence of mobilities is captured well considering both nitrogen-vacancy and oxygen-substitutional impurities with appropriate ratios, and room-temperature doping dependency agrees well with the empirical Caughey-Thomas model. Furthermore, we suggest modulation doping and polar-discontinuity doping to reduce ionized-impurity scattering in achieving a high-mobility ScN for device applications.

Abstract Image

限制氮化钪电子迁移率的主要散射机制
氮化物半导体中的电子迁移率受到电子-声子、缺陷、晶界和位错散射的限制。氮化钪(ScN)是一种新兴的岩盐间接带隙半导体,其电子迁移率因生长条件而异。由于实现高迁移率对 ScN 的器件应用至关重要,因此从微观上了解不同的散射机制极为重要。在此,我们利用 Ab initio Boltzmann 传输形式主义和实验测量结果,展示了各种散射过程在限制 ScN 电子迁移率方面的层次结构。计算结果表明,尽管弗洛里希相互作用为室温下的 ScN 电子迁移率设定了 ∼524 cm2/V-s 的固有上限,但电离杂质和晶界散射会显著降低迁移率。考虑到氮空位和氧置换杂质的适当比例,迁移率的实验温度依赖性得到了很好的捕捉,室温掺杂依赖性与经验考奇-托马斯模型非常吻合。此外,我们还建议采用调制掺杂和极性不连续掺杂来减少电离杂质散射,以实现器件应用中的高迁移率 ScN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信