Dynamic change in dominant factor controls the injection-induced slip behaviors of rock fractures

IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Zhou Fang, Wei Wu
{"title":"Dynamic change in dominant factor controls the injection-induced slip behaviors of rock fractures","authors":"Zhou Fang,&nbsp;Wei Wu","doi":"10.1016/j.ijrmms.2024.105887","DOIUrl":null,"url":null,"abstract":"<div><p>In the geo-energy industry, fluid injection induces different slip behaviors of a rock fracture, from aseismic creep to dynamic slip. The transition from aseismic creep to dynamic slip is explained by the ratio of the stiffness of surrounding rock and the critical stiffness of the fracture. However, numerous studies suggest multiple controls affecting the slip behaviors, and their joint influences on the slip transition remain unclear. Here we trained a dual-stage attention-based recurrent neural network model using fluid injection experimental data to explore the dominant factor controlling the slip behaviors. Our results showed that the dominant factor changes during fluid injection, and the attention to shear stress dominates the occurrence of dynamic slip. We found that high fluctuations of the attentions to normal stress, shear stress, and water pressure gradient promote the slip transition. Our model was applied to explore the competing process between water pressure front and aseismic creep front while gradually increasing the injection pressure and to reveal the dynamic change in the dominant factor during the growth of cumulative moment release.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105887"},"PeriodicalIF":7.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002521","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the geo-energy industry, fluid injection induces different slip behaviors of a rock fracture, from aseismic creep to dynamic slip. The transition from aseismic creep to dynamic slip is explained by the ratio of the stiffness of surrounding rock and the critical stiffness of the fracture. However, numerous studies suggest multiple controls affecting the slip behaviors, and their joint influences on the slip transition remain unclear. Here we trained a dual-stage attention-based recurrent neural network model using fluid injection experimental data to explore the dominant factor controlling the slip behaviors. Our results showed that the dominant factor changes during fluid injection, and the attention to shear stress dominates the occurrence of dynamic slip. We found that high fluctuations of the attentions to normal stress, shear stress, and water pressure gradient promote the slip transition. Our model was applied to explore the competing process between water pressure front and aseismic creep front while gradually increasing the injection pressure and to reveal the dynamic change in the dominant factor during the growth of cumulative moment release.

主导因素的动态变化控制着岩石裂缝的注浆诱导滑移行为
在地质能源行业,流体注入会诱发岩石断裂的不同滑移行为,从地震蠕变到动态滑移。从地震蠕变到动态滑移的过渡是由围岩刚度与断裂临界刚度的比值来解释的。然而,大量研究表明,影响滑移行为的多种控制因素,以及它们对滑移转变的共同影响仍不清楚。在此,我们利用流体注入实验数据训练了一个基于注意力的双阶段递归神经网络模型,以探索控制滑移行为的主导因素。结果表明,在流体注入过程中,主导因素发生了变化,对剪切应力的关注主导了动态滑移的发生。我们发现,对法向应力、剪切应力和水压梯度的关注度的高波动会促进滑移转变。我们的模型被用于探索在逐渐增加注入压力时水压力前沿和无震蠕变前沿之间的竞争过程,并揭示了累积力矩释放增长过程中主导因素的动态变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
5.60%
发文量
196
审稿时长
18 weeks
期刊介绍: The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信