Hindcasted Body Temperatures Reveal Underestimated Thermal Stress Faced by Intertidal Species

IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY
Lin-Xuan Ma, Jie Wang, Mark W. Denny, Yun-Wei Dong
{"title":"Hindcasted Body Temperatures Reveal Underestimated Thermal Stress Faced by Intertidal Species","authors":"Lin-Xuan Ma,&nbsp;Jie Wang,&nbsp;Mark W. Denny,&nbsp;Yun-Wei Dong","doi":"10.1111/geb.13908","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>As global climate changes, there is a clear mismatch between the temporal and spatial characteristics of body temperature and environmental temperature, confounding the assessment of thermal stress for organisms in many ecological studies. Here, we hindcast the hourly body temperatures of intertidal molluscs to explore the differences between them and environmental temperatures (air and water temperatures) in multiple metrics of thermal stress.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Intertidal shores in East Asia (0°–45°N, 100°E–140°E).</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>40 years, 1980 to 2019.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Mollusca.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We collected habitat zonation data and measured the morphological characteristics of 25 intertidal molluscs living in East Asia. For three different types of intertidal molluscs (i.e., bivalves, limpets and snails), we built corresponding heat budget models (HBMs) to hindcast the hourly body temperatures from 1980 to 2019. We analysed the thermal stress of intertidal species faced in three metrics, annual extreme high temperatures (<i>T</i><sub><i>99</i></sub>), seasonal daily maximum temperatures (DMT) and heatwaves, and compared them with environmental temperatures.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found that <i>T</i><sub><i>99</i></sub> of body temperatures and their interannual warming rates are significantly higher than those of environmental temperatures. Moreover, there were non-negligible mismatches between the seasonal thermal pattern and heatwaves of body temperatures and environmental temperatures, suggesting that the deleterious impacts of global warming on intertidal species are underestimated and cannot be directly revealed by environmental temperatures.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Thermal stress patterns of body temperature were significantly different from those of environmental temperature, and the thermal stress faced by intertidal species had been persistently underestimated. These results emphasise that body temperature should be used as the appropriate metric for evaluating and predicting the impacts of global warming and weather extremes in the intertidal biological system.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 11","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13908","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim

As global climate changes, there is a clear mismatch between the temporal and spatial characteristics of body temperature and environmental temperature, confounding the assessment of thermal stress for organisms in many ecological studies. Here, we hindcast the hourly body temperatures of intertidal molluscs to explore the differences between them and environmental temperatures (air and water temperatures) in multiple metrics of thermal stress.

Location

Intertidal shores in East Asia (0°–45°N, 100°E–140°E).

Time Period

40 years, 1980 to 2019.

Major Taxa Studied

Mollusca.

Methods

We collected habitat zonation data and measured the morphological characteristics of 25 intertidal molluscs living in East Asia. For three different types of intertidal molluscs (i.e., bivalves, limpets and snails), we built corresponding heat budget models (HBMs) to hindcast the hourly body temperatures from 1980 to 2019. We analysed the thermal stress of intertidal species faced in three metrics, annual extreme high temperatures (T99), seasonal daily maximum temperatures (DMT) and heatwaves, and compared them with environmental temperatures.

Results

We found that T99 of body temperatures and their interannual warming rates are significantly higher than those of environmental temperatures. Moreover, there were non-negligible mismatches between the seasonal thermal pattern and heatwaves of body temperatures and environmental temperatures, suggesting that the deleterious impacts of global warming on intertidal species are underestimated and cannot be directly revealed by environmental temperatures.

Main Conclusions

Thermal stress patterns of body temperature were significantly different from those of environmental temperature, and the thermal stress faced by intertidal species had been persistently underestimated. These results emphasise that body temperature should be used as the appropriate metric for evaluating and predicting the impacts of global warming and weather extremes in the intertidal biological system.

后报体温显示潮间带物种面临的热应力被低估了
随着全球气候的变化,体温与环境温度的时空特征明显不匹配,这给许多生态学研究中的生物热应力评估带来了困惑。在此,我们对潮间带软体动物的每小时体温进行了后向预测,以探讨它们与环境温度(气温和水温)之间在多个热应力指标上的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Ecology and Biogeography
Global Ecology and Biogeography 环境科学-生态学
CiteScore
12.10
自引率
3.10%
发文量
170
审稿时长
3 months
期刊介绍: Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信