Complex temporal dynamics of insect metacommunities along a tropical elevational gradient

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Ecography Pub Date : 2024-09-05 DOI:10.1111/ecog.07455
Frederico S. Neves, Pedro Giovâni da Silva, Flávio Camarota, Cássio Alencar Nunes, Joaquín Hortal, Flávio S. de Castro, Marina Beirão, Letícia Ramos, Ricardo Solar, Geraldo Wilson Fernandes
{"title":"Complex temporal dynamics of insect metacommunities along a tropical elevational gradient","authors":"Frederico S. Neves, Pedro Giovâni da Silva, Flávio Camarota, Cássio Alencar Nunes, Joaquín Hortal, Flávio S. de Castro, Marina Beirão, Letícia Ramos, Ricardo Solar, Geraldo Wilson Fernandes","doi":"10.1111/ecog.07455","DOIUrl":null,"url":null,"abstract":"Unraveling the spatiotemporal dynamics of communities is critical to understand how biodiversity responds to global changes. However, this task is not trivial, as these dynamics are quite complex, and most studies are limited to few taxa at small local and temporal scales. Tropical mountains are ideal indicators of biodiversity response since these endangered and complex ecosystems include many distinct habitats within small geographical areas, harboring a megadiverse fauna, especially insects. Indeed, while insects are particularly sensitive to environmental and climatic changes, the extent of the impact of climate variability on mountain tropical insect diversity remains poorly understood. Here we present time-series data from a decade of studying the spatiotemporal dynamics of ants, butterflies and dung beetles. We assessed patterns of species richness change along the elevational gradient for each taxonomic group per sampling year and cumulatively over years. We then quantified community changes over time by measuring the variation in species richness across sampling years (temporal trends in α-diversity), and the temporal variation in species composition (temporal β-diversity) evaluating species gains and losses over time. We also evaluated the variation of air temperature and humidity through meteorological stations within the sampling years. We detected a classical pattern of species richness decline with elevation, albeit with a noticeable increase in species richness variation with increasing elevation. The temporal β-diversity exhibited considerable variability across elevations, taxa, and time. Only dung beetles presented a positive relationship with humidity variation over the years. Critically, both rare and common species drove extirpations and colonizations, and we found no trend of temporal decline of insect species at local and regional scales. Our study shows that insect metacommunity responses to elevation and global changes are rather complex, and stresses the importance of long-term studies that incorporate multiple sampling periods and different groups of organisms in tropical mountains.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07455","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Unraveling the spatiotemporal dynamics of communities is critical to understand how biodiversity responds to global changes. However, this task is not trivial, as these dynamics are quite complex, and most studies are limited to few taxa at small local and temporal scales. Tropical mountains are ideal indicators of biodiversity response since these endangered and complex ecosystems include many distinct habitats within small geographical areas, harboring a megadiverse fauna, especially insects. Indeed, while insects are particularly sensitive to environmental and climatic changes, the extent of the impact of climate variability on mountain tropical insect diversity remains poorly understood. Here we present time-series data from a decade of studying the spatiotemporal dynamics of ants, butterflies and dung beetles. We assessed patterns of species richness change along the elevational gradient for each taxonomic group per sampling year and cumulatively over years. We then quantified community changes over time by measuring the variation in species richness across sampling years (temporal trends in α-diversity), and the temporal variation in species composition (temporal β-diversity) evaluating species gains and losses over time. We also evaluated the variation of air temperature and humidity through meteorological stations within the sampling years. We detected a classical pattern of species richness decline with elevation, albeit with a noticeable increase in species richness variation with increasing elevation. The temporal β-diversity exhibited considerable variability across elevations, taxa, and time. Only dung beetles presented a positive relationship with humidity variation over the years. Critically, both rare and common species drove extirpations and colonizations, and we found no trend of temporal decline of insect species at local and regional scales. Our study shows that insect metacommunity responses to elevation and global changes are rather complex, and stresses the importance of long-term studies that incorporate multiple sampling periods and different groups of organisms in tropical mountains.
热带海拔梯度昆虫元群落的复杂时间动态
揭示群落的时空动态对于了解生物多样性如何应对全球变化至关重要。然而,这项任务并不轻松,因为这些动态变化相当复杂,而且大多数研究仅限于局部和时间尺度较小的少数分类群。热带山区是生物多样性响应的理想指标,因为这些濒危和复杂的生态系统在狭小的地理区域内包括许多不同的栖息地,蕴藏着种类繁多的动物,尤其是昆虫。事实上,虽然昆虫对环境和气候变化特别敏感,但人们对气候变异对山区热带昆虫多样性的影响程度仍然知之甚少。在这里,我们展示了十年来研究蚂蚁、蝴蝶和蜣螂时空动态的时间序列数据。我们评估了每个分类群在每个采样年沿海拔梯度的物种丰富度变化模式以及多年的累积变化模式。然后,我们通过测量各采样年物种丰富度的变化(α-多样性的时间趋势)和物种组成的时间变化(时间β-多样性)来量化群落随时间的变化,评估物种随时间的增减。我们还通过采样年份内的气象站评估了空气温度和湿度的变化。我们发现了物种丰富度随海拔升高而下降的典型模式,尽管随着海拔升高,物种丰富度的变化明显增加。不同海拔高度、不同类群和不同时间的时间 β 多样性表现出相当大的差异。只有蜣螂与多年的湿度变化呈正相关。重要的是,稀有和常见物种都推动了昆虫的灭绝和定殖,而且我们在地方和区域尺度上没有发现昆虫物种在时间上的衰退趋势。我们的研究表明,昆虫元群落对海拔高度和全球变化的反应是相当复杂的,并强调了在热带山区进行多采样期和不同生物群体的长期研究的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信