Benoît Matet, Etienne Côme, Angelo Furno, Sebastian Hörl, Latifa Oukhellou, Nour-Eddin El Faouzi
{"title":"Improving the generation of synthetic travel demand using origin–destination matrices from mobile phone data","authors":"Benoît Matet, Etienne Côme, Angelo Furno, Sebastian Hörl, Latifa Oukhellou, Nour-Eddin El Faouzi","doi":"10.1007/s11116-024-10524-2","DOIUrl":null,"url":null,"abstract":"<p>The dynamics of urban transportation can be captured using activity-based models, which rely on travel demand data to get a comprehensive understanding of urban mobility. This data is usually derived from population samples and Household Travel Surveys (HTSs), which can be expensive and as a result, are conducted only every 5 to 10 years. Moreover, due to their limited reach, they are not adapted to represent the spatio-temporal structure of the flows of the total population. This calls for complementary data sources that could be used to update old surveys to cut costs and to estimate the global spatial mobility behavior of the population. In this paper, we propose steps in the state-of-the-art pipeline for travel demand synthesis with an approach for the temporal calibration and the location attribution based on time-dependent origin–destination (OD) matrices. These matrices describe the flows between zones of a city. This methodology is illustrated on the city of Lyon, France, with OD matrices estimated from the mobile phone activity of the subscribers of French telecom operator Orange. We explore how the spatialization can be performed using various probabilistic graph models whose parameters are evaluated <i>via</i> the OD matrices. The structure of the models enforces the consistency of the locations with the chains of activities, such as the fact that two “home” activities must have the same location. Multiple models are proposed, corresponding to different compromises between the two potentially incompatible sources that are HTS and mobile data. We show that while a very naive spatialization approach allows the generation of synthetic travel demand that perfectly fits the flows described by the OD matrices without respecting the consistency of the locations, the other proposed approaches offer much more realistic agendas at the expense of only small discrepancies with the mobile data.</p>","PeriodicalId":49419,"journal":{"name":"Transportation","volume":"17 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11116-024-10524-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamics of urban transportation can be captured using activity-based models, which rely on travel demand data to get a comprehensive understanding of urban mobility. This data is usually derived from population samples and Household Travel Surveys (HTSs), which can be expensive and as a result, are conducted only every 5 to 10 years. Moreover, due to their limited reach, they are not adapted to represent the spatio-temporal structure of the flows of the total population. This calls for complementary data sources that could be used to update old surveys to cut costs and to estimate the global spatial mobility behavior of the population. In this paper, we propose steps in the state-of-the-art pipeline for travel demand synthesis with an approach for the temporal calibration and the location attribution based on time-dependent origin–destination (OD) matrices. These matrices describe the flows between zones of a city. This methodology is illustrated on the city of Lyon, France, with OD matrices estimated from the mobile phone activity of the subscribers of French telecom operator Orange. We explore how the spatialization can be performed using various probabilistic graph models whose parameters are evaluated via the OD matrices. The structure of the models enforces the consistency of the locations with the chains of activities, such as the fact that two “home” activities must have the same location. Multiple models are proposed, corresponding to different compromises between the two potentially incompatible sources that are HTS and mobile data. We show that while a very naive spatialization approach allows the generation of synthetic travel demand that perfectly fits the flows described by the OD matrices without respecting the consistency of the locations, the other proposed approaches offer much more realistic agendas at the expense of only small discrepancies with the mobile data.
期刊介绍:
In our first issue, published in 1972, we explained that this Journal is intended to promote the free and vigorous exchange of ideas and experience among the worldwide community actively concerned with transportation policy, planning and practice. That continues to be our mission, with a clear focus on topics concerned with research and practice in transportation policy and planning, around the world.
These four words, policy and planning, research and practice are our key words. While we have a particular focus on transportation policy analysis and travel behaviour in the context of ground transportation, we willingly consider all good quality papers that are highly relevant to transportation policy, planning and practice with a clear focus on innovation, on extending the international pool of knowledge and understanding. Our interest is not only with transportation policies - and systems and services – but also with their social, economic and environmental impacts, However, papers about the application of established procedures to, or the development of plans or policies for, specific locations are unlikely to prove acceptable unless they report experience which will be of real benefit those working elsewhere. Papers concerned with the engineering, safety and operational management of transportation systems are outside our scope.