Yuanze Xu, Juno Kim, Shripathi Ramakrishnan, Taiyi Chen, Xiaoyu Zhang, Yugang Zhang, Andrew J. Musser, Qiuming Yu
{"title":"Unraveling the Formation Mechanisms of Highly Oriented Tin Perovskite with a 3D-over-2D Heterostructure","authors":"Yuanze Xu, Juno Kim, Shripathi Ramakrishnan, Taiyi Chen, Xiaoyu Zhang, Yugang Zhang, Andrew J. Musser, Qiuming Yu","doi":"10.1021/acsenergylett.4c01725","DOIUrl":null,"url":null,"abstract":"Tin-based perovskites (TinPVKs) have become the most promising candidates for lead-free perovskite solar cells, owing to its low toxicity and improved photovoltaic performance. However, due to the absence of 4f shell, TinPVKs suffer from uncontrolled crystallization, limiting the power conversion efficiency (PCE) of tin perovskite solar cells (TinPSCs). Here, we systematically study the ligand regulated crystallization process of TinPVK. We find that with elongated spin time, TinPVK crystals undergo reorientation and lateral growth. 3D α-phase FASnI<sub>3</sub> and 2D (<i>n</i> = 2) and 2D (<i>n</i> = 1) phases emerge sequentially to form a “3D-over-2D” heterostructure via a proposed “diffusion-propagation” mechanism. TinPSCs exhibit improved open circuit voltage (<i>V</i><sub>OC</sub>) due to favorable energy level alignment of the 3D-over-2D heterostructure, with a champion PCE value of 13.07% and <i>T</i><sub>80</sub> value of over 1200 h. This work provides mechanistic insights on controlled crystallization and heterostructure formation of TinPVKs, paving the way toward high-efficiency TinPSCs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"4 1","pages":""},"PeriodicalIF":18.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c01725","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tin-based perovskites (TinPVKs) have become the most promising candidates for lead-free perovskite solar cells, owing to its low toxicity and improved photovoltaic performance. However, due to the absence of 4f shell, TinPVKs suffer from uncontrolled crystallization, limiting the power conversion efficiency (PCE) of tin perovskite solar cells (TinPSCs). Here, we systematically study the ligand regulated crystallization process of TinPVK. We find that with elongated spin time, TinPVK crystals undergo reorientation and lateral growth. 3D α-phase FASnI3 and 2D (n = 2) and 2D (n = 1) phases emerge sequentially to form a “3D-over-2D” heterostructure via a proposed “diffusion-propagation” mechanism. TinPSCs exhibit improved open circuit voltage (VOC) due to favorable energy level alignment of the 3D-over-2D heterostructure, with a champion PCE value of 13.07% and T80 value of over 1200 h. This work provides mechanistic insights on controlled crystallization and heterostructure formation of TinPVKs, paving the way toward high-efficiency TinPSCs.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.