Interpolating refinable functions and \(n_s\)-step interpolatory subdivision schemes

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Bin Han
{"title":"Interpolating refinable functions and \\(n_s\\)-step interpolatory subdivision schemes","authors":"Bin Han","doi":"10.1007/s10444-024-10192-x","DOIUrl":null,"url":null,"abstract":"<div><p>Standard interpolatory subdivision schemes and their underlying interpolating refinable functions are of interest in CAGD, numerical PDEs, and approximation theory. Generalizing these notions, we introduce and study <span>\\(n_s\\)</span>-step interpolatory <span>\\(\\textsf{M}\\)</span>-subdivision schemes and their interpolating <span>\\(\\textsf{M}\\)</span>-refinable functions with <span>\\(n_s\\in \\mathbb {N}\\cup \\{\\infty \\}\\)</span> and a dilation factor <span>\\(\\textsf{M}\\in \\mathbb {N}\\backslash \\{1\\}\\)</span>. We completely characterize <span>\\(\\mathscr {C}^m\\)</span>-convergence and smoothness of <span>\\(n_s\\)</span>-step interpolatory subdivision schemes and their interpolating <span>\\(\\textsf{M}\\)</span>-refinable functions in terms of their masks. Inspired by <span>\\(n_s\\)</span>-step interpolatory stationary subdivision schemes, we further introduce the notion of <i>r</i>-mask quasi-stationary subdivision schemes, and then we characterize their <span>\\(\\mathscr {C}^m\\)</span>-convergence and smoothness properties using only their masks. Moreover, combining <span>\\(n_s\\)</span>-step interpolatory subdivision schemes with <i>r</i>-mask quasi-stationary subdivision schemes, we can obtain <span>\\(r n_s\\)</span>-step interpolatory subdivision schemes. Examples and construction procedures of convergent <span>\\(n_s\\)</span>-step interpolatory <span>\\(\\textsf{M}\\)</span>-subdivision schemes are provided to illustrate our results with dilation factors <span>\\(\\textsf{M}=2,3,4\\)</span>. In addition, for the dyadic dilation <span>\\(\\textsf{M}=2\\)</span> and <span>\\(r=2,3\\)</span>, using <i>r</i> masks with only two-ring stencils, we provide examples of <span>\\(\\mathscr {C}^r\\)</span>-convergent <i>r</i>-step interpolatory <i>r</i>-mask quasi-stationary dyadic subdivision schemes.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10192-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Standard interpolatory subdivision schemes and their underlying interpolating refinable functions are of interest in CAGD, numerical PDEs, and approximation theory. Generalizing these notions, we introduce and study \(n_s\)-step interpolatory \(\textsf{M}\)-subdivision schemes and their interpolating \(\textsf{M}\)-refinable functions with \(n_s\in \mathbb {N}\cup \{\infty \}\) and a dilation factor \(\textsf{M}\in \mathbb {N}\backslash \{1\}\). We completely characterize \(\mathscr {C}^m\)-convergence and smoothness of \(n_s\)-step interpolatory subdivision schemes and their interpolating \(\textsf{M}\)-refinable functions in terms of their masks. Inspired by \(n_s\)-step interpolatory stationary subdivision schemes, we further introduce the notion of r-mask quasi-stationary subdivision schemes, and then we characterize their \(\mathscr {C}^m\)-convergence and smoothness properties using only their masks. Moreover, combining \(n_s\)-step interpolatory subdivision schemes with r-mask quasi-stationary subdivision schemes, we can obtain \(r n_s\)-step interpolatory subdivision schemes. Examples and construction procedures of convergent \(n_s\)-step interpolatory \(\textsf{M}\)-subdivision schemes are provided to illustrate our results with dilation factors \(\textsf{M}=2,3,4\). In addition, for the dyadic dilation \(\textsf{M}=2\) and \(r=2,3\), using r masks with only two-ring stencils, we provide examples of \(\mathscr {C}^r\)-convergent r-step interpolatory r-mask quasi-stationary dyadic subdivision schemes.

可细化函数内插和 $$n_s$$ 步内插细分方案
标准内插细分方案及其内插细化函数在 CAGD、数值 PDE 和近似理论中都很有意义。根据这些概念,我们引入并研究了具有 \(n_s\in \mathbb {N}cup \{\infty \}) 和扩张因子 \(\textsf{M}\in \mathbb {N}backslash \{1/}\)的 \(n_s\)-step 插值 \(textsf{M}\)-subdivision 方案及其插值 \(textsf{M}\)-refinable 函数。我们完全描述了 \(mathscr {C}^m\) -步内插细分方案的收敛性和平滑性,以及它们的内插\(\textsf{M}\)-可细分函数的掩码。受 \(n_s\)-step 插值静止细分方案的启发,我们进一步引入了 r 掩码准静止细分方案的概念,然后仅使用它们的掩码来描述它们的 \(\mathscr {C}^m\)- 收敛性和平滑性。此外,将 \(n_s\)-step 插值细分方案与 r 掩码准稳态细分方案相结合,我们可以得到 \(r n_s\)-step 插值细分方案。我们提供了收敛的 \(n_s\)-step 插值 \(\textsf{M}\)-subdivatory 方案的例子和构造过程,以说明我们在扩张因子 \(\textsf{M}=2,3,4\) 时的结果。此外,对于二元扩张((\textsf{M}=2\)和\(r=2,3\)),使用只有双环模板的r掩模,我们提供了\(\mathscr {C}^r\)-convergent r-step interpolatory r-mask quasi-stationary dyadic subdivision schemes的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信