{"title":"Interpolating refinable functions and \\(n_s\\)-step interpolatory subdivision schemes","authors":"Bin Han","doi":"10.1007/s10444-024-10192-x","DOIUrl":null,"url":null,"abstract":"<div><p>Standard interpolatory subdivision schemes and their underlying interpolating refinable functions are of interest in CAGD, numerical PDEs, and approximation theory. Generalizing these notions, we introduce and study <span>\\(n_s\\)</span>-step interpolatory <span>\\(\\textsf{M}\\)</span>-subdivision schemes and their interpolating <span>\\(\\textsf{M}\\)</span>-refinable functions with <span>\\(n_s\\in \\mathbb {N}\\cup \\{\\infty \\}\\)</span> and a dilation factor <span>\\(\\textsf{M}\\in \\mathbb {N}\\backslash \\{1\\}\\)</span>. We completely characterize <span>\\(\\mathscr {C}^m\\)</span>-convergence and smoothness of <span>\\(n_s\\)</span>-step interpolatory subdivision schemes and their interpolating <span>\\(\\textsf{M}\\)</span>-refinable functions in terms of their masks. Inspired by <span>\\(n_s\\)</span>-step interpolatory stationary subdivision schemes, we further introduce the notion of <i>r</i>-mask quasi-stationary subdivision schemes, and then we characterize their <span>\\(\\mathscr {C}^m\\)</span>-convergence and smoothness properties using only their masks. Moreover, combining <span>\\(n_s\\)</span>-step interpolatory subdivision schemes with <i>r</i>-mask quasi-stationary subdivision schemes, we can obtain <span>\\(r n_s\\)</span>-step interpolatory subdivision schemes. Examples and construction procedures of convergent <span>\\(n_s\\)</span>-step interpolatory <span>\\(\\textsf{M}\\)</span>-subdivision schemes are provided to illustrate our results with dilation factors <span>\\(\\textsf{M}=2,3,4\\)</span>. In addition, for the dyadic dilation <span>\\(\\textsf{M}=2\\)</span> and <span>\\(r=2,3\\)</span>, using <i>r</i> masks with only two-ring stencils, we provide examples of <span>\\(\\mathscr {C}^r\\)</span>-convergent <i>r</i>-step interpolatory <i>r</i>-mask quasi-stationary dyadic subdivision schemes.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10192-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Standard interpolatory subdivision schemes and their underlying interpolating refinable functions are of interest in CAGD, numerical PDEs, and approximation theory. Generalizing these notions, we introduce and study \(n_s\)-step interpolatory \(\textsf{M}\)-subdivision schemes and their interpolating \(\textsf{M}\)-refinable functions with \(n_s\in \mathbb {N}\cup \{\infty \}\) and a dilation factor \(\textsf{M}\in \mathbb {N}\backslash \{1\}\). We completely characterize \(\mathscr {C}^m\)-convergence and smoothness of \(n_s\)-step interpolatory subdivision schemes and their interpolating \(\textsf{M}\)-refinable functions in terms of their masks. Inspired by \(n_s\)-step interpolatory stationary subdivision schemes, we further introduce the notion of r-mask quasi-stationary subdivision schemes, and then we characterize their \(\mathscr {C}^m\)-convergence and smoothness properties using only their masks. Moreover, combining \(n_s\)-step interpolatory subdivision schemes with r-mask quasi-stationary subdivision schemes, we can obtain \(r n_s\)-step interpolatory subdivision schemes. Examples and construction procedures of convergent \(n_s\)-step interpolatory \(\textsf{M}\)-subdivision schemes are provided to illustrate our results with dilation factors \(\textsf{M}=2,3,4\). In addition, for the dyadic dilation \(\textsf{M}=2\) and \(r=2,3\), using r masks with only two-ring stencils, we provide examples of \(\mathscr {C}^r\)-convergent r-step interpolatory r-mask quasi-stationary dyadic subdivision schemes.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.