Phosphate ester-linked carbonized polymer nanosheets to limit microbiological contamination in aquaculture water

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Anisha Anand, Binesh Unnikrishnan, Chen-Yow Wang, Jui-Yang Lai, Han-Jia Lin, Chih-Ching Huang
{"title":"Phosphate ester-linked carbonized polymer nanosheets to limit microbiological contamination in aquaculture water","authors":"Anisha Anand, Binesh Unnikrishnan, Chen-Yow Wang, Jui-Yang Lai, Han-Jia Lin, Chih-Ching Huang","doi":"10.1038/s41545-024-00378-7","DOIUrl":null,"url":null,"abstract":"In this study, we developed a simple, low-temperature method to synthesize carbonized polymer nanosheets (CPNSs) using sodium alginate, a biopolymer derived from algae, and diammonium hydrogen phosphate. These nanosheets are produced through a solid-state pyrolysis at 180 °C, involving dehydration, cross-linking through phosphate ester bonds, and subsequent carbonization, forming 2D structured CPNSs. These synthesized CPNSs exhibit excellent bacterial adsorption capabilities, particularly against V. parahaemolyticus and S. aureus. When applied to ordinary filter paper, the CPNS-modified paper efficiently filters bacteria from aquaculture water, removing over 98% of V. parahaemolyticus within two hours and maintaining effectiveness after 24 h. In contrast, control filter paper showed significantly reduced efficiency over the same period. Our filtration tests demonstrated enhanced survival rates for shrimp in aquaculture systems, highlighting the potential of CPNSs-modified filter paper as a suitable treatment to reduce the microbiological contamination levels in recirculating aquaculture systems in the event of a disease outbreak.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-12"},"PeriodicalIF":10.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00378-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00378-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we developed a simple, low-temperature method to synthesize carbonized polymer nanosheets (CPNSs) using sodium alginate, a biopolymer derived from algae, and diammonium hydrogen phosphate. These nanosheets are produced through a solid-state pyrolysis at 180 °C, involving dehydration, cross-linking through phosphate ester bonds, and subsequent carbonization, forming 2D structured CPNSs. These synthesized CPNSs exhibit excellent bacterial adsorption capabilities, particularly against V. parahaemolyticus and S. aureus. When applied to ordinary filter paper, the CPNS-modified paper efficiently filters bacteria from aquaculture water, removing over 98% of V. parahaemolyticus within two hours and maintaining effectiveness after 24 h. In contrast, control filter paper showed significantly reduced efficiency over the same period. Our filtration tests demonstrated enhanced survival rates for shrimp in aquaculture systems, highlighting the potential of CPNSs-modified filter paper as a suitable treatment to reduce the microbiological contamination levels in recirculating aquaculture systems in the event of a disease outbreak.

Abstract Image

Abstract Image

限制水产养殖用水微生物污染的磷酸酯连接碳化聚合物纳米片
在这项研究中,我们开发了一种简单的低温方法,利用从藻类中提取的生物聚合物海藻酸钠和磷酸氢二铵合成碳化聚合物纳米片(CPNS)。这些纳米片是在 180 °C 的固态热解过程中产生的,包括脱水、通过磷酸酯键交联以及随后的碳化,形成二维结构的 CPNS。这些合成的 CPNS 具有出色的细菌吸附能力,尤其是对副溶血性大肠杆菌和金黄色葡萄球菌的吸附能力。将 CPNS 改性纸用于普通滤纸时,可有效过滤养殖水中的细菌,两小时内可去除 98% 以上的副溶血性弧菌,24 小时后仍能保持效果。我们的过滤测试表明,水产养殖系统中对虾的存活率有所提高,这凸显了 CPNSs 改性滤纸作为一种合适的处理方法,在疾病爆发时降低循环水产养殖系统中微生物污染水平的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信