{"title":"HCC-Net: Holistic Cross-Joint Convolutional Network for CSI Feedback in Massive MIMO Systems","authors":"Xiang Zhao;Chao Wang;Lin Mei;Xu Xu;Tong Peng","doi":"10.1109/LWC.2024.3454425","DOIUrl":null,"url":null,"abstract":"With the rapid development of massive multiple-input multiple-output (mMIMO) techniques, the network capacity, number of served users and communication efficiency have been improved dramatically compared to that with limited number of antennas. These advantages are established based on accurate channel state information (CSI) at the base station (BS), which comes with a very high cost due to continuous CSI feedback from all the user equipments (UEs). In this letter, we propose a neural network-based CSI compression scheme with simple encoder-decoder framework for mMIMO systems. To achieve high accuracy, our proposed framework constructs an overall perceptual encoder-decoder structure with holistic cross-joint convolution (HCC) modules of different scales. In addition, a perceptual loss is introduced into the proposed design to further improve the accuracy in matrix recovery and limits the computational cost. Substantial experimental results demonstrate that the proposed HCC network (HCC-Net) is superior to several advanced algorithms in terms of estimation accuracy and computational complexity, such as the CSiNet+ and TransNet.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"13 10","pages":"2937-2941"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10664550/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of massive multiple-input multiple-output (mMIMO) techniques, the network capacity, number of served users and communication efficiency have been improved dramatically compared to that with limited number of antennas. These advantages are established based on accurate channel state information (CSI) at the base station (BS), which comes with a very high cost due to continuous CSI feedback from all the user equipments (UEs). In this letter, we propose a neural network-based CSI compression scheme with simple encoder-decoder framework for mMIMO systems. To achieve high accuracy, our proposed framework constructs an overall perceptual encoder-decoder structure with holistic cross-joint convolution (HCC) modules of different scales. In addition, a perceptual loss is introduced into the proposed design to further improve the accuracy in matrix recovery and limits the computational cost. Substantial experimental results demonstrate that the proposed HCC network (HCC-Net) is superior to several advanced algorithms in terms of estimation accuracy and computational complexity, such as the CSiNet+ and TransNet.
期刊介绍:
IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.