{"title":"A novel security-based adaptive reconfigurable intelligent surfaces assisted clustering strategy","authors":"Yue Tian, Xiaofan Zheng","doi":"10.1049/ell2.70008","DOIUrl":null,"url":null,"abstract":"<p>Reconfigurable intelligent surfaces (RISs) have attracted a great deal of interest due to the potential contributions to the next-generation wireless networks. This letter proposes an enhancement to the physical layer security (PLS) of a multi-hop RIS-assisted underwater optical wireless communication (UOWC) system. Owing to the complexity of the underwater environment, a security-based adaptive RIS (SA-RIS) clustering strategy, which aims to reflect optical signals among clusters to improve the performance of the overall system, is evaluated. By combining the underwater channel model, the closed-form expressions of probability density function (PDF) and cumulative distribution function (CDF) are derived. Moreover, by increasing the numbers of RIS clusters, the performance metrics such as secrecy outage probability (SOP) and average secrecy capacity (ASC) are evaluated under different scenarios. The obtained results demonstrated that, in contrast to the case without preventing the eavesdropper, the proposed strategy in evasion scenarios could improve the SOP significantly. It can be concluded that the system secrecy performances are further improved by assigning different RIS clusters with proper channel quality.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"60 17","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable intelligent surfaces (RISs) have attracted a great deal of interest due to the potential contributions to the next-generation wireless networks. This letter proposes an enhancement to the physical layer security (PLS) of a multi-hop RIS-assisted underwater optical wireless communication (UOWC) system. Owing to the complexity of the underwater environment, a security-based adaptive RIS (SA-RIS) clustering strategy, which aims to reflect optical signals among clusters to improve the performance of the overall system, is evaluated. By combining the underwater channel model, the closed-form expressions of probability density function (PDF) and cumulative distribution function (CDF) are derived. Moreover, by increasing the numbers of RIS clusters, the performance metrics such as secrecy outage probability (SOP) and average secrecy capacity (ASC) are evaluated under different scenarios. The obtained results demonstrated that, in contrast to the case without preventing the eavesdropper, the proposed strategy in evasion scenarios could improve the SOP significantly. It can be concluded that the system secrecy performances are further improved by assigning different RIS clusters with proper channel quality.
期刊介绍:
Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews.
Scope
As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below.
Antennas and Propagation
Biomedical and Bioinspired Technologies, Signal Processing and Applications
Control Engineering
Electromagnetism: Theory, Materials and Devices
Electronic Circuits and Systems
Image, Video and Vision Processing and Applications
Information, Computing and Communications
Instrumentation and Measurement
Microwave Technology
Optical Communications
Photonics and Opto-Electronics
Power Electronics, Energy and Sustainability
Radar, Sonar and Navigation
Semiconductor Technology
Signal Processing
MIMO