{"title":"Multi-energy complementary optimal scheduling based on hydrogen gas turbine considering the flexibility of electrolyser","authors":"Yuntian Zhang, Tiance Zhang, Siwei Liu, Gengyin Li, Yapeng Zhang, Zhibing Hu","doi":"10.1049/rpg2.13039","DOIUrl":null,"url":null,"abstract":"<p>With the transition towards a low-carbon energy system, renewable energy resources have been extensively developed. However, the limited ability of the power system to absorb renewable energy sources with high volatility, such as wind and solar power, has led to significant curtailment. Redundant electric energy can be converted into storable hydrogen energy through electrolysis and utilized for heating purposes. By leveraging the complementarity of diverse energy sources, optimal allocation of renewable energy can be achieved across a broader scope. However, in the current scheduling of multi-energy systems, the efficiency of electrolyser is crudely assumed to be a constant, which results in scheduling solutions that deviate from the Pareto optimum. Therefore, a polymer electrolyte membrane electrolyser's model with non-linear relationship between the load rate and conversion efficiency is proposed in this paper. To tackle the non-convex optimal scheduling challenge, an adaptive chaos-augmented particle swarm optimization algorithm is introduced, which effectively enhances computational efficiency while preventing entrapment in local optima. Case studies based on IEEE 14-node system verified the effectiveness of the proposed method.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 12","pages":"1972-1985"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13039","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
With the transition towards a low-carbon energy system, renewable energy resources have been extensively developed. However, the limited ability of the power system to absorb renewable energy sources with high volatility, such as wind and solar power, has led to significant curtailment. Redundant electric energy can be converted into storable hydrogen energy through electrolysis and utilized for heating purposes. By leveraging the complementarity of diverse energy sources, optimal allocation of renewable energy can be achieved across a broader scope. However, in the current scheduling of multi-energy systems, the efficiency of electrolyser is crudely assumed to be a constant, which results in scheduling solutions that deviate from the Pareto optimum. Therefore, a polymer electrolyte membrane electrolyser's model with non-linear relationship between the load rate and conversion efficiency is proposed in this paper. To tackle the non-convex optimal scheduling challenge, an adaptive chaos-augmented particle swarm optimization algorithm is introduced, which effectively enhances computational efficiency while preventing entrapment in local optima. Case studies based on IEEE 14-node system verified the effectiveness of the proposed method.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf