Optimization of Thermal Performance in Lauric Acid-Based Phase Change Materials Using a Priority Clustering Approach

Energy Storage Pub Date : 2024-09-04 DOI:10.1002/est2.70026
Osama Khan, Mohd Parvez, Pratibha Kumari, Zeinebou Yahya, Aiyeshah Alhodaib, Ashok Kumar Yadav, Anoop Kumar Shukla
{"title":"Optimization of Thermal Performance in Lauric Acid-Based Phase Change Materials Using a Priority Clustering Approach","authors":"Osama Khan,&nbsp;Mohd Parvez,&nbsp;Pratibha Kumari,&nbsp;Zeinebou Yahya,&nbsp;Aiyeshah Alhodaib,&nbsp;Ashok Kumar Yadav,&nbsp;Anoop Kumar Shukla","doi":"10.1002/est2.70026","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigates the thermal properties of lauric acid (LA) as a phase change material (PCM) using the <i>K</i>-Means clustering method to analyze the melting characteristics. This study focuses on the optimization of PCMs using a hybrid methodology of analytic hierarchy process (AHP) and <i>K</i>-Means clustering. LA, enhanced with zinc oxide (ZnO) nanoparticles, was evaluated for its thermal performance. LA's suitability as a PCM is evaluated based on initial temperature, heating rate, final temperature, and time to melt. AHP was employed to determine the weightage for three critical outcomes: latent heat, melting point, and thermal conductivity. The weightages assigned were 59%, 31%, and 11%, respectively, reflecting the relative importance of each outcome in assessing the efficiency of LA as a PCM. Furthermore, <i>K</i>-Means clustering was then applied to categorize the data based on these weighted outcomes. AHP was utilized to determine the weightage of input parameters, assigning 27% to initial temperature, 15% to heating rate, and 22% to final temperature, underscoring their significance in the analysis. The optimal input conditions identified were an initial temperature of 24.8°C, a ieating rate of 5.6°C/min, a final temperature of 81.4°C, and a time to melt of 10.6 min. These conditions resulted in optimal outcomes of 208 J/g for latent heat, a melting point of 80.9°C, and a thermal conductivity of 0.21 W/m·K. This hybrid approach provides a robust framework for optimizing PCM performance, facilitating enhanced thermal energy storage and release in practical applications.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the thermal properties of lauric acid (LA) as a phase change material (PCM) using the K-Means clustering method to analyze the melting characteristics. This study focuses on the optimization of PCMs using a hybrid methodology of analytic hierarchy process (AHP) and K-Means clustering. LA, enhanced with zinc oxide (ZnO) nanoparticles, was evaluated for its thermal performance. LA's suitability as a PCM is evaluated based on initial temperature, heating rate, final temperature, and time to melt. AHP was employed to determine the weightage for three critical outcomes: latent heat, melting point, and thermal conductivity. The weightages assigned were 59%, 31%, and 11%, respectively, reflecting the relative importance of each outcome in assessing the efficiency of LA as a PCM. Furthermore, K-Means clustering was then applied to categorize the data based on these weighted outcomes. AHP was utilized to determine the weightage of input parameters, assigning 27% to initial temperature, 15% to heating rate, and 22% to final temperature, underscoring their significance in the analysis. The optimal input conditions identified were an initial temperature of 24.8°C, a ieating rate of 5.6°C/min, a final temperature of 81.4°C, and a time to melt of 10.6 min. These conditions resulted in optimal outcomes of 208 J/g for latent heat, a melting point of 80.9°C, and a thermal conductivity of 0.21 W/m·K. This hybrid approach provides a robust framework for optimizing PCM performance, facilitating enhanced thermal energy storage and release in practical applications.

利用优先聚类法优化月桂酸基相变材料的热性能
本研究采用 K-Means 聚类法分析了作为相变材料 (PCM) 的月桂酸 (LA) 的熔化特性,研究了其热性能。本研究的重点是使用层次分析法(AHP)和 K-Means 聚类的混合方法优化 PCM。对添加了氧化锌(ZnO)纳米颗粒的洛杉矶进行了热性能评估。根据初始温度、加热速率、最终温度和熔化时间来评估 LA 作为 PCM 的适用性。采用 AHP 来确定潜热、熔点和热导率这三个关键结果的权重。所分配的权重分别为 59%、31% 和 11%,反映了每个结果在评估 LA 作为 PCM 的效率方面的相对重要性。然后,根据这些加权结果应用 K-Means 聚类对数据进行分类。利用 AHP 确定了输入参数的权重,其中初始温度占 27%,加热速率占 15%,最终温度占 22%,突出了它们在分析中的重要性。确定的最佳输入条件为:初始温度 24.8°C,加热速度 5.6°C/分钟,最终温度 81.4°C,熔化时间 10.6 分钟。这些条件的最佳结果是:潜热为 208 J/g,熔点为 80.9°C,导热系数为 0.21 W/m-K。这种混合方法为优化 PCM 性能提供了一个稳健的框架,有助于在实际应用中增强热能储存和释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信