Nonstaggered central scheme with steady-state discretization for solving the open channel flows via the flux globalization

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhen Li
{"title":"Nonstaggered central scheme with steady-state discretization for solving the open channel flows via the flux globalization","authors":"Zhen Li","doi":"10.1016/j.apnum.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><p>The paper proposed a second-order steady-state-preserving nonstaggered central scheme for solving one-layer and two-layer open channel flows via the flux globalization. The global flux transforms the model into the homogeneous form, avoiding the complex discretization of the source terms. However, when the traditional appropriate quadrature rule discrete the global variables, the scheme tends to maintain only the moving-water equilibrium but not the “lake at rest” equilibrium. This paper proposes a new discretization method, the steady-state discretization (SSD) method of global variables, so that not only the still-water equilibrium can be maintained, but also the moving-water equilibrium, i.e., the discharge, the energy and the global flux are equilibrium. The scheme also ensures that the cross-sectional wet area is positive by introducing a “draining” time-step technique. Numerical experiments verify that the scheme is well-balanced, positivity-preserving and robust when flowing through open channel flows under the continuous or discontinuous bottom topography and channel width, and exactly capturing small perturbations and propagating interfaces of the steady-state solution.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposed a second-order steady-state-preserving nonstaggered central scheme for solving one-layer and two-layer open channel flows via the flux globalization. The global flux transforms the model into the homogeneous form, avoiding the complex discretization of the source terms. However, when the traditional appropriate quadrature rule discrete the global variables, the scheme tends to maintain only the moving-water equilibrium but not the “lake at rest” equilibrium. This paper proposes a new discretization method, the steady-state discretization (SSD) method of global variables, so that not only the still-water equilibrium can be maintained, but also the moving-water equilibrium, i.e., the discharge, the energy and the global flux are equilibrium. The scheme also ensures that the cross-sectional wet area is positive by introducing a “draining” time-step technique. Numerical experiments verify that the scheme is well-balanced, positivity-preserving and robust when flowing through open channel flows under the continuous or discontinuous bottom topography and channel width, and exactly capturing small perturbations and propagating interfaces of the steady-state solution.

采用稳态离散的非交错中心方案,通过流量全局化解决明渠水流问题
本文提出了一种二阶稳态保留非交错中心方案,通过通量全局化来求解单层和双层明渠流动。全局通量将模型转化为同质形式,避免了源项的复杂离散化。然而,当采用传统的适当正交规则离散全局变量时,该方案往往只能维持动水平衡,而不能维持 "静止湖泊 "平衡。本文提出了一种新的离散化方法--全局变量稳态离散化(SSD)方法,这样不仅能保持静水平衡,还能保持动水平衡,即排泄量、能量和全局通量都是平衡的。该方案还通过引入 "排水 "时间步长技术,确保横截面湿面积为正值。数值实验验证了该方案在连续或不连续的底部地形和河道宽度条件下流经明渠水流时具有良好的平衡性、保正性和稳健性,并能准确捕捉稳态解的小扰动和传播界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信