{"title":"On Gabor frames generated by B-splines, totally positive functions, and Hermite functions","authors":"Riya Ghosh, A. Antony Selvan","doi":"10.1016/j.apnum.2024.08.021","DOIUrl":null,"url":null,"abstract":"<div><p>The frame set of a window <span><math><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is the subset of all lattice parameters <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> such that <span><math><mi>G</mi><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>=</mo><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>β</mi><mi>m</mi><mo>⋅</mo></mrow></msup><mi>ϕ</mi><mo>(</mo><mo>⋅</mo><mo>−</mo><mi>α</mi><mi>k</mi><mo>)</mo><mo>:</mo><mi>k</mi><mo>,</mo><mi>m</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></math></span> forms a frame for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. In this paper, we investigate the frame set of B-splines, totally positive functions, and Hermite functions. We derive a sufficient condition for Gabor frames using the connection between sampling theory in shift-invariant spaces and Gabor analysis. As a consequence, we obtain a new frame region belonging to the frame set of B-splines and Hermite functions. For a class of functions that includes certain totally positive functions, we prove that for any choice of lattice parameters <span><math><mi>α</mi><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn></math></span> with <span><math><mi>α</mi><mi>β</mi><mo><</mo><mn>1</mn></math></span>, there exists a <span><math><mi>γ</mi><mo>></mo><mn>0</mn></math></span> depending on <em>αβ</em> such that <span><math><mi>G</mi><mo>(</mo><mi>ϕ</mi><mo>(</mo><mi>γ</mi><mo>⋅</mo><mo>)</mo><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> forms a frame for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Our results give explicit frame bounds.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The frame set of a window is the subset of all lattice parameters such that forms a frame for . In this paper, we investigate the frame set of B-splines, totally positive functions, and Hermite functions. We derive a sufficient condition for Gabor frames using the connection between sampling theory in shift-invariant spaces and Gabor analysis. As a consequence, we obtain a new frame region belonging to the frame set of B-splines and Hermite functions. For a class of functions that includes certain totally positive functions, we prove that for any choice of lattice parameters with , there exists a depending on αβ such that forms a frame for . Our results give explicit frame bounds.