Multimodal fusion network for ICU patient outcome prediction

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Multimodal fusion network for ICU patient outcome prediction","authors":"","doi":"10.1016/j.neunet.2024.106672","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past decades, massive Electronic Health Records (EHRs) have been accumulated in Intensive Care Unit (ICU) and many other healthcare scenarios. The rich and comprehensive information recorded presents an exceptional opportunity for patient outcome predictions. Nevertheless, due to the diversity of data modalities, EHRs exhibit a heterogeneous characteristic, raising a difficulty to organically leverage information from various modalities. It is an urgent need to capture the underlying correlations among different modalities. In this paper, we propose a novel framework named Multimodal Fusion Network (MFNet) for ICU patient outcome prediction. First, we incorporate multiple modality-specific encoders to learn different modality representations. Notably, a graph guided encoder is designed to capture underlying global relationships among medical codes, and a text encoder with pre-fine-tuning strategy is adopted to extract appropriate text representations. Second, we propose to pairwise merge multimodal representations with a tailored hierarchical fusion mechanism. The experiments conducted on the eICU-CRD dataset validate that MFNet achieves superior performance on mortality prediction and Length of Stay (LoS) prediction compared with various representative and state-of-the-art baselines. Moreover, comprehensive ablation study demonstrates the effectiveness of each component of MFNet.</p></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024005963","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decades, massive Electronic Health Records (EHRs) have been accumulated in Intensive Care Unit (ICU) and many other healthcare scenarios. The rich and comprehensive information recorded presents an exceptional opportunity for patient outcome predictions. Nevertheless, due to the diversity of data modalities, EHRs exhibit a heterogeneous characteristic, raising a difficulty to organically leverage information from various modalities. It is an urgent need to capture the underlying correlations among different modalities. In this paper, we propose a novel framework named Multimodal Fusion Network (MFNet) for ICU patient outcome prediction. First, we incorporate multiple modality-specific encoders to learn different modality representations. Notably, a graph guided encoder is designed to capture underlying global relationships among medical codes, and a text encoder with pre-fine-tuning strategy is adopted to extract appropriate text representations. Second, we propose to pairwise merge multimodal representations with a tailored hierarchical fusion mechanism. The experiments conducted on the eICU-CRD dataset validate that MFNet achieves superior performance on mortality prediction and Length of Stay (LoS) prediction compared with various representative and state-of-the-art baselines. Moreover, comprehensive ablation study demonstrates the effectiveness of each component of MFNet.

用于重症监护室患者预后预测的多模态融合网络
在过去的几十年里,重症监护室(ICU)和许多其他医疗场景积累了大量的电子健康记录(EHR)。所记录的丰富而全面的信息为患者预后预测提供了难得的机会。然而,由于数据模式的多样性,电子病历呈现出异构特征,给有机利用各种模式的信息带来了困难。捕捉不同模式之间的潜在关联是当务之急。在本文中,我们提出了一个用于 ICU 患者预后预测的新型框架,名为多模态融合网络(MFNet)。首先,我们结合多种特定模态编码器来学习不同的模态表征。值得注意的是,我们设计了一个图引导编码器来捕捉医疗代码之间的潜在全局关系,并采用了一个具有预微调策略的文本编码器来提取适当的文本表征。其次,我们建议采用量身定制的分层融合机制对多模态表征进行配对合并。在 eICU-CRD 数据集上进行的实验验证了,与各种具有代表性的先进基线相比,MFNet 在死亡率预测和住院时间(LoS)预测方面表现出色。此外,全面的消融研究也证明了 MFNet 每个组件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信