The cohomology and deformations of O-operators on BiHom-associative algebras

IF 0.8 2区 数学 Q2 MATHEMATICS
Danli Huang, Ling Liu, Jiafeng Lü
{"title":"The cohomology and deformations of O-operators on BiHom-associative algebras","authors":"Danli Huang,&nbsp;Ling Liu,&nbsp;Jiafeng Lü","doi":"10.1016/j.jalgebra.2024.07.056","DOIUrl":null,"url":null,"abstract":"<div><p>We first generalize the cohomology of <span><math><mi>O</mi></math></span>-operators on BiHom-associative algebras by construct a graded Lie-algebra, in which the Maurer-Cartan elements are characterized by the given <span><math><mi>O</mi></math></span>-operator, and show that the cohomology represents the Hochschild cohomology of a certain BiHom-associative algebra with coefficients in a bimodule. Next, we study the linear and formal deformations of <span><math><mi>O</mi></math></span>-operators on BiHom-associative algebras, which are controlled by the Hochschild cohomology. Finally, as applications, we introduce the deformations of BiHom-associative <strong>r</strong>-matrices and infinitesimal BiHom-bialgebras on certain regular BiHom-associative algebras.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004642","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We first generalize the cohomology of O-operators on BiHom-associative algebras by construct a graded Lie-algebra, in which the Maurer-Cartan elements are characterized by the given O-operator, and show that the cohomology represents the Hochschild cohomology of a certain BiHom-associative algebra with coefficients in a bimodule. Next, we study the linear and formal deformations of O-operators on BiHom-associative algebras, which are controlled by the Hochschild cohomology. Finally, as applications, we introduce the deformations of BiHom-associative r-matrices and infinitesimal BiHom-bialgebras on certain regular BiHom-associative algebras.

BiHom-协同代数上 O 操作数的同调与变形
首先,我们通过构建一个分级李代数,其中的毛勒-卡尔坦元素由给定的 O 运算符表征,从而概括出 BiHom-associative 代数上 O 运算符的同调,并证明该同调代表了具有双模子系数的某个 BiHom-associative 代数的霍赫希尔德同调。接下来,我们研究了 O 操作数在 BiHom-associative 代数上的线性变形和形式变形,这些变形都受霍赫希尔德同调的控制。最后,作为应用,我们介绍了 BiHom-associative r 矩和无穷小 BiHom 双桥在某些正则 BiHom-associative 对象上的变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信