{"title":"Edge-apexing in hereditary classes of graphs","authors":"Jagdeep Singh , Vaidy Sivaraman","doi":"10.1016/j.disc.2024.114234","DOIUrl":null,"url":null,"abstract":"<div><p>A class <span><math><mi>G</mi></math></span> of graphs is called hereditary if it is closed under taking induced subgraphs. We denote by <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>epex</mi></mrow></msup></math></span> the class of graphs that are at most one edge away from being in <span><math><mi>G</mi></math></span>. We note that <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>epex</mi></mrow></msup></math></span> is hereditary and prove that if a hereditary class <span><math><mi>G</mi></math></span> has finitely many forbidden induced subgraphs, then so does <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>epex</mi></mrow></msup></math></span>.</p><p>The hereditary class of cographs consists of all graphs <em>G</em> that can be generated from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> using complementation and disjoint union. Cographs are precisely the graphs that do not have the 4-vertex path as an induced subgraph. For the class of edge-apex cographs our main result bounds the order of such forbidden induced subgraphs by 8 and finds all of them by computer search.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114234"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003650/pdfft?md5=3a7b1576f400f1b5803871014f7dd340&pid=1-s2.0-S0012365X24003650-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003650","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A class of graphs is called hereditary if it is closed under taking induced subgraphs. We denote by the class of graphs that are at most one edge away from being in . We note that is hereditary and prove that if a hereditary class has finitely many forbidden induced subgraphs, then so does .
The hereditary class of cographs consists of all graphs G that can be generated from using complementation and disjoint union. Cographs are precisely the graphs that do not have the 4-vertex path as an induced subgraph. For the class of edge-apex cographs our main result bounds the order of such forbidden induced subgraphs by 8 and finds all of them by computer search.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.