HTSA: A novel hybrid task scheduling algorithm for heterogeneous cloud computing environment

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ipsita Behera, Srichandan Sobhanayak
{"title":"HTSA: A novel hybrid task scheduling algorithm for heterogeneous cloud computing environment","authors":"Ipsita Behera,&nbsp;Srichandan Sobhanayak","doi":"10.1016/j.simpat.2024.103014","DOIUrl":null,"url":null,"abstract":"<div><p>Cloud computing provides users and programs with scalable resources and on-demand services virtually in real time, making it a fundamental paradigm in modern computing. The concept for using remote computing resources is novel. Cloud computing relies on task scheduling to boost system performance, reduce execution time, and optimize resource use. Due to exponential task increase and problem complexity, the search space is huge. Optimization tasks like this are NP-hard. This work aims to find a near-optimal solution for a multi-objective task scheduling problem in the cloud while lowering search time. Using the Genetic Algorithm (GA) and Gravitational Search Algorithms (GSA) benefits while avoiding their drawbacks, we offer a standard cloud computing task scheduling method to improve system performance and optimize the Quality of service (QoS) parameters like energy, makespan, resource utilization and throughput. We use CloudSim to test standard functions, real-time, and synthetic workloads. The obtained results are compared to other similar, metaheuristic-based techniques that were evaluated under the same conditions. The designed technique outperforms Gravitational Search Algorithms (GSA), Ant Colony Optimization(ACO), and Particle Swarm optimization(PSO) in Degree Of Imbalance (12%), resource utilization (9%), Mean Response Time (7%) and energy consumption (6%).</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X2400128X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud computing provides users and programs with scalable resources and on-demand services virtually in real time, making it a fundamental paradigm in modern computing. The concept for using remote computing resources is novel. Cloud computing relies on task scheduling to boost system performance, reduce execution time, and optimize resource use. Due to exponential task increase and problem complexity, the search space is huge. Optimization tasks like this are NP-hard. This work aims to find a near-optimal solution for a multi-objective task scheduling problem in the cloud while lowering search time. Using the Genetic Algorithm (GA) and Gravitational Search Algorithms (GSA) benefits while avoiding their drawbacks, we offer a standard cloud computing task scheduling method to improve system performance and optimize the Quality of service (QoS) parameters like energy, makespan, resource utilization and throughput. We use CloudSim to test standard functions, real-time, and synthetic workloads. The obtained results are compared to other similar, metaheuristic-based techniques that were evaluated under the same conditions. The designed technique outperforms Gravitational Search Algorithms (GSA), Ant Colony Optimization(ACO), and Particle Swarm optimization(PSO) in Degree Of Imbalance (12%), resource utilization (9%), Mean Response Time (7%) and energy consumption (6%).

HTSA:适用于异构云计算环境的新型混合任务调度算法
云计算为用户和程序实时提供可扩展的资源和按需服务,使其成为现代计算的基本模式。使用远程计算资源的概念非常新颖。云计算依靠任务调度来提高系统性能、缩短执行时间并优化资源使用。由于任务呈指数增长,问题复杂,搜索空间巨大。类似这样的优化任务很难完成。本研究旨在为云计算中的多目标任务调度问题找到接近最优的解决方案,同时缩短搜索时间。利用遗传算法(GA)和引力搜索算法(GSA)的优点,同时避免它们的缺点,我们提供了一种标准的云计算任务调度方法,以提高系统性能并优化服务质量(QoS)参数,如能量、工期、资源利用率和吞吐量。我们使用 CloudSim 测试标准功能、实时和合成工作负载。获得的结果与在相同条件下评估的其他类似的基于元启发式的技术进行了比较。所设计的技术在失衡度(12%)、资源利用率(9%)、平均响应时间(7%)和能耗(6%)方面优于引力搜索算法(GSA)、蚁群优化(ACO)和粒子群优化(PSO)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信