A linear algorithm for radio k-coloring of powers of paths having small diameters

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Dipayan Chakraborty , Soumen Nandi , Sagnik Sen , D.K. Supraja
{"title":"A linear algorithm for radio k-coloring of powers of paths having small diameters","authors":"Dipayan Chakraborty ,&nbsp;Soumen Nandi ,&nbsp;Sagnik Sen ,&nbsp;D.K. Supraja","doi":"10.1016/j.jcss.2024.103577","DOIUrl":null,"url":null,"abstract":"<div><p>The radio <em>k</em>-chromatic number <span><math><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> is the minimum integer <em>λ</em> such that there exists a function <span><math><mi>ϕ</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>λ</mi><mo>}</mo></math></span> satisfying <span><math><mo>|</mo><mi>ϕ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>−</mo><mi>ϕ</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>d</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span>, where <span><math><mi>d</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> denotes the distance between <em>u</em> and <em>v</em>. A considerable amount of attention has been given to find the exact values or providing polynomial time algorithms to determine <span><math><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for several basic graph families such as paths, cycles, trees, and powers of paths, usually for some specific values of <em>k</em>. In this article, we find the exact values of <span><math><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> where <em>G</em> is a power of a path with diameter strictly less than <em>k</em>. Our proof readily provides a linear time algorithm for assigning a radio <em>k</em>-coloring of <em>G</em>. Furthermore, our proof technique is a potential tool for solving the same problem for other classes of graphs having “small” diameters.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"147 ","pages":"Article 103577"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000722","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

The radio k-chromatic number rck(G) of a graph G is the minimum integer λ such that there exists a function ϕ:V(G){0,1,,λ} satisfying |ϕ(u)ϕ(v)|k+1d(u,v), where d(u,v) denotes the distance between u and v. A considerable amount of attention has been given to find the exact values or providing polynomial time algorithms to determine rck(G) for several basic graph families such as paths, cycles, trees, and powers of paths, usually for some specific values of k. In this article, we find the exact values of rck(G) where G is a power of a path with diameter strictly less than k. Our proof readily provides a linear time algorithm for assigning a radio k-coloring of G. Furthermore, our proof technique is a potential tool for solving the same problem for other classes of graphs having “small” diameters.

小直径路径幂的无线电 k 着色线性算法
图 G 的无线电 k 色度数 rck(G) 是存在函数 ϕ:V(G)→{0,1,⋯,λ} 满足 |ϕ(u)-ϕ(v)|≥k+1-d(u,v) 的最小整数 λ,其中 d(u,v) 表示 u 和 v 之间的距离。对于一些基本图族,如路径、循环、树和路径的幂,通常是针对某些特定的 k 值,人们已经花费了大量精力去寻找它们的精确值或提供多项式时间算法来确定 rck(G)。在本文中,我们找到了 rck(G)的精确值,其中 G 是直径严格小于 k 的路径的幂。我们的证明很容易提供一种线性时间算法,用于为 G 指定无线电 k 着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信