Open Photonics: An integrated approach for building a 3D-printed motorized rotation stage system

IF 2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yannic Toschke , Jan Klenen , Mirco Imlau
{"title":"Open Photonics: An integrated approach for building a 3D-printed motorized rotation stage system","authors":"Yannic Toschke ,&nbsp;Jan Klenen ,&nbsp;Mirco Imlau","doi":"10.1016/j.ohx.2024.e00577","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of experimental optics- and photonics-research, motorized, high-precision rotation stages are an integral part of almost every laboratory setup. Nevertheless, their availability in the laboratory is limited due to the relatively high acquisition costs in the range of several 1000€ and is often supplemented by manual rotation stages. If only a single sample is to be analyzed repeatedly at two different angles or the polarization of a laser source is to be rotated, this approach is understandable. Yet, in the context of automation and the associated gain in measurement time, cost-effective and precise rotation stages designed for the use of optics are lacking.</p><p>We present a low-cost alternative of a motorized high precision rotation stage system. The design is based on a combination of 3D-printed components, which form the monolithic mechanical framework, and a stepper motor controlled by an ESP32 based microcontroller. By coupling the motor and rotation unit via a toothed belt, backlash is minimized and at the same time high positioning accuracy can be achieved. Finally, the implementation of remote procedure calls for serial communication and the utilization of a physical home switch and incremental encoder complete the desired feature set of an integrated system for laboratory setups. The total costs can thus be reduced to less than 100€ without significantly restricting the performance criteria.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"20 ","pages":"Article e00577"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000713/pdfft?md5=61cd481c35a35949d76e0620bb7be30a&pid=1-s2.0-S2468067224000713-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of experimental optics- and photonics-research, motorized, high-precision rotation stages are an integral part of almost every laboratory setup. Nevertheless, their availability in the laboratory is limited due to the relatively high acquisition costs in the range of several 1000€ and is often supplemented by manual rotation stages. If only a single sample is to be analyzed repeatedly at two different angles or the polarization of a laser source is to be rotated, this approach is understandable. Yet, in the context of automation and the associated gain in measurement time, cost-effective and precise rotation stages designed for the use of optics are lacking.

We present a low-cost alternative of a motorized high precision rotation stage system. The design is based on a combination of 3D-printed components, which form the monolithic mechanical framework, and a stepper motor controlled by an ESP32 based microcontroller. By coupling the motor and rotation unit via a toothed belt, backlash is minimized and at the same time high positioning accuracy can be achieved. Finally, the implementation of remote procedure calls for serial communication and the utilization of a physical home switch and incremental encoder complete the desired feature set of an integrated system for laboratory setups. The total costs can thus be reduced to less than 100€ without significantly restricting the performance criteria.

Abstract Image

开放光子学:构建 3D 打印电动旋转平台系统的集成方法
在光学和光子学的实验研究中,电动高精度旋转平台几乎是每个实验室设备不可或缺的一部分。然而,由于其购置成本相对较高,大约在几千欧元左右,因此在实验室中的应用非常有限,通常只能通过手动旋转平台进行补充。如果只是在两个不同的角度反复分析一个样品或旋转激光源的偏振,这种方法是可以理解的。然而,为了实现自动化并缩短测量时间,目前还缺乏专为光学仪器设计的高性价比、高精度旋转平台。该设计基于 3D 打印组件(构成整体机械框架)和由基于 ESP32 的微控制器控制的步进电机的组合。通过齿形带将电机和旋转装置耦合在一起,可以最大限度地减少反向间隙,同时实现高定位精度。最后,串行通信远程程序调用的实施以及物理原点开关和增量式编码器的使用,完善了实验室设置集成系统所需的功能集。因此,总成本可降至 100 欧元以下,而性能标准不会受到明显限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HardwareX
HardwareX Engineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍: HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信