Passive control of bio-convective flow on Eyring–Powell nanofluid over a slippery surface with activation energy and magnetic impact

Q1 Mathematics
S. Eswaramoorthi , S. Divya , N. Thamaraikannan , B. Roopadevi , K. Loganathan
{"title":"Passive control of bio-convective flow on Eyring–Powell nanofluid over a slippery surface with activation energy and magnetic impact","authors":"S. Eswaramoorthi ,&nbsp;S. Divya ,&nbsp;N. Thamaraikannan ,&nbsp;B. Roopadevi ,&nbsp;K. Loganathan","doi":"10.1016/j.padiff.2024.100884","DOIUrl":null,"url":null,"abstract":"<div><p>The current communication deliberates the consequences of the Darcy–Forchheimer flow of Eyring–Powell nanofluid past a slippery surface containing activation energy and motile microorganisms. The flow is influenced by the consequences of Brownian motion, thermal radiation, the Cattaneo–Christov heat-mass flux theory, and thermophoresis. The framed flow models are transformed into ordinary derivative equations by adopting appropriate conversion variables. The transformed equations are numerically tackled by using the bvp4c scheme in MATLAB. The study is remarkable for its comprehensive analysis of the interplay of several flow factors, such as the Forchheimer number, Richardson number, bioconvection Rayleigh number, radiation, thermophoresis, Brownian motion, thermal and mass relaxation time parameters. The outcomes are visualized through tables and diagrams, which provide significant insights into the intricate physical mechanisms involved in this multifaceted subject. Evidently, the velocity profile declines when there is a rise in the buoyancy ratio parameter and the opposite trend is obtained for the Richardson number. The temperature grows when there is a larger magnitude of the thermophoresis parameter and it reduces for greater values of the time relaxation parameter. The activation energy and mass relaxation parameters enhance the concentration profile. The microbe density increases when enhancing the quantity of Peclet number and it declines for bioconvection Lewis number.</p></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"11 ","pages":"Article 100884"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666818124002705/pdfft?md5=16f08054e33a3c29c57e7ad0720fc2f4&pid=1-s2.0-S2666818124002705-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124002705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The current communication deliberates the consequences of the Darcy–Forchheimer flow of Eyring–Powell nanofluid past a slippery surface containing activation energy and motile microorganisms. The flow is influenced by the consequences of Brownian motion, thermal radiation, the Cattaneo–Christov heat-mass flux theory, and thermophoresis. The framed flow models are transformed into ordinary derivative equations by adopting appropriate conversion variables. The transformed equations are numerically tackled by using the bvp4c scheme in MATLAB. The study is remarkable for its comprehensive analysis of the interplay of several flow factors, such as the Forchheimer number, Richardson number, bioconvection Rayleigh number, radiation, thermophoresis, Brownian motion, thermal and mass relaxation time parameters. The outcomes are visualized through tables and diagrams, which provide significant insights into the intricate physical mechanisms involved in this multifaceted subject. Evidently, the velocity profile declines when there is a rise in the buoyancy ratio parameter and the opposite trend is obtained for the Richardson number. The temperature grows when there is a larger magnitude of the thermophoresis parameter and it reduces for greater values of the time relaxation parameter. The activation energy and mass relaxation parameters enhance the concentration profile. The microbe density increases when enhancing the quantity of Peclet number and it declines for bioconvection Lewis number.

利用活化能和磁场影响被动控制光滑表面上 Eyring-Powell 纳米流体上的生物对流
这篇论文探讨了艾林-鲍威尔纳米流体流经含有活化能和运动微生物的光滑表面的达西-福赫海默流的后果。该流动受到布朗运动、热辐射、卡塔尼奥-克里斯托夫热质通量理论和热泳的影响。通过采用适当的转换变量,将框架流动模型转换为普通导数方程。使用 MATLAB 中的 bvp4c 方案对转换后的方程进行数值处理。这项研究的显著特点是全面分析了几个流动因素的相互作用,如福克海默数、理查森数、生物对流雷利数、辐射、热泳、布朗运动、热弛豫时间和质量弛豫时间参数。研究结果通过表格和图表直观地展示出来,使人们对这一多层面课题所涉及的复杂物理机制有了深刻的认识。显而易见,当浮力比参数上升时,速度曲线会下降,而理查森数的趋势则相反。热泳参数越大,温度越高;时间松弛参数越大,温度越低。活化能和质量松弛参数会增强浓度曲线。佩克莱特数越大,微生物密度越大,而生物对流路易斯数越小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信