Complete synchronization of discrete-time variable-order fractional neural networks with time delays

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Tong Li , Hong-Li Li , Long Zhang , Song Zheng
{"title":"Complete synchronization of discrete-time variable-order fractional neural networks with time delays","authors":"Tong Li ,&nbsp;Hong-Li Li ,&nbsp;Long Zhang ,&nbsp;Song Zheng","doi":"10.1016/j.cjph.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates complete synchronization of discrete-time variable-order fractional neural networks (DVFNNs) with time delays. By discrete inequality technologies and nabla Laplace transform, two stability lemmas are derived which are generalizations of the constant-order case. Furthermore, several complete synchronization criteria for DVFNNs are proposed by utilizing inequality techniques and Lyapunov method. Finally, a numerical example is provided to verify the theoretical results. This paper also provides a stability analysis method for variable-order fractional discrete-time systems.</p></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"91 ","pages":"Pages 883-894"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S057790732400323X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates complete synchronization of discrete-time variable-order fractional neural networks (DVFNNs) with time delays. By discrete inequality technologies and nabla Laplace transform, two stability lemmas are derived which are generalizations of the constant-order case. Furthermore, several complete synchronization criteria for DVFNNs are proposed by utilizing inequality techniques and Lyapunov method. Finally, a numerical example is provided to verify the theoretical results. This paper also provides a stability analysis method for variable-order fractional discrete-time systems.

具有时延的离散时变阶分数神经网络的完全同步化
本文研究了具有时间延迟的离散时间变阶分数神经网络(DVFNN)的完全同步问题。通过离散不等式技术和纳布拉-拉普拉斯变换,推导出两个稳定性定理,它们是对恒定阶情况的概括。此外,还利用不等式技术和 Lyapunov 方法提出了几种 DVFNN 的完全同步准则。最后,本文提供了一个数值示例来验证理论结果。本文还提供了变阶分数离散时间系统的稳定性分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信