{"title":"Absorption of liquid nitrogen into porous materials used in the cryogenic cold chain","authors":"R.M.A. Spijkers, S. Vanapalli","doi":"10.1016/j.cryogenics.2024.103936","DOIUrl":null,"url":null,"abstract":"<div><p>A dry-shipper is a dewar used to transport frozen biomedical samples at cryogenic temperature. The inside of the dewar is lined with a porous material that absorbs and prevents the spillage of liquid nitrogen during transportation. In these porous materials vapor might be trapped during filling of the dry-shipper leading to a lower transport and storage time. The conditions under which the vapor is formed and the relationship with the porous material properties is not well understood. We studied the impact of the pore size distribution on the vapor retention in the porous materials by comparing liquid nitrogen absorption in aluminosilicate material with relatively large pores (1-100 μm) and calciumsilicate with small pores (∼0.45 μm). Both samples were immersed into saturated liquid nitrogen and a comparison of the absorbed liquid volume fraction with the porosity showed the calciumsilicate sample was completely filled with liquid, whereas the aluminosilicate contained a vapor fraction of about twenty percent. As a further investigation, we studied the absorption characteristics in subcooled liquid nitrogen. In this case, both materials absorbed liquid equivalent to their respective void fraction indicating no vapor pockets in the material. From these results, we propose a design property window for potential new porous materials for use in the dry-shippers.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0011227524001565/pdfft?md5=1c1c0a6012f2e48af878f071f86c3a7f&pid=1-s2.0-S0011227524001565-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001565","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A dry-shipper is a dewar used to transport frozen biomedical samples at cryogenic temperature. The inside of the dewar is lined with a porous material that absorbs and prevents the spillage of liquid nitrogen during transportation. In these porous materials vapor might be trapped during filling of the dry-shipper leading to a lower transport and storage time. The conditions under which the vapor is formed and the relationship with the porous material properties is not well understood. We studied the impact of the pore size distribution on the vapor retention in the porous materials by comparing liquid nitrogen absorption in aluminosilicate material with relatively large pores (1-100 μm) and calciumsilicate with small pores (∼0.45 μm). Both samples were immersed into saturated liquid nitrogen and a comparison of the absorbed liquid volume fraction with the porosity showed the calciumsilicate sample was completely filled with liquid, whereas the aluminosilicate contained a vapor fraction of about twenty percent. As a further investigation, we studied the absorption characteristics in subcooled liquid nitrogen. In this case, both materials absorbed liquid equivalent to their respective void fraction indicating no vapor pockets in the material. From these results, we propose a design property window for potential new porous materials for use in the dry-shippers.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics