{"title":"A Comprehensive IoT edge based smart irrigation system for tomato cultivation","authors":"Rohit Kumar Kasera, Tapodhir Acharjee","doi":"10.1016/j.iot.2024.101356","DOIUrl":null,"url":null,"abstract":"<div><p>Agriculture industry is the primary engine for a country's economic development. Growing crops using minimum irrigation water is a major challenge for farmers. In conventional farming, crops may be affected by various diseases due to inadequate irrigation scheduling. Recent proposals have suggested using Edge-IoT, AI, and distributed computing to accelerate the inference procedure utilized in smart irrigation applications. The use of resource-constrained edge servers and edge devices used to deliver smart agriculture applications can cause latency-sensitive workloads to interfere with one another. To address this issue, we design a long-range (LoRa) edge IoT computing-based sustainable and customized smart irrigation framework to capture the real-time data of tomato plants. This helps in automatic underground drip irrigation scheduling. This also predicts total water demand and usage, and measure plant growth status. The edge-IoT cloud data transmission control and optimization has been enforced using Smart irrigation data optimization and robust transmission (SIDORT) Message Queuing Telemetry Transport (MQTT) system. We develop a hybrid algorithm named Linked least traversal (LLT) for machine-to-machine communication (M2M). Also, a Reinforcement learning (RL) based Optimal Soil Wetness Closeness Policy (OSWCP) for irrigation scheduling has been proposed. The performance of the proposed smart irrigation models has been validated through extensive experiments using real-time data in which OSWCP performance has been measured at a 97.88 % accuracy rate. Additionally, a comparison of our proposed architecture has been accomplished by resolving the existing smart irrigation system challenges.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101356"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254266052400297X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture industry is the primary engine for a country's economic development. Growing crops using minimum irrigation water is a major challenge for farmers. In conventional farming, crops may be affected by various diseases due to inadequate irrigation scheduling. Recent proposals have suggested using Edge-IoT, AI, and distributed computing to accelerate the inference procedure utilized in smart irrigation applications. The use of resource-constrained edge servers and edge devices used to deliver smart agriculture applications can cause latency-sensitive workloads to interfere with one another. To address this issue, we design a long-range (LoRa) edge IoT computing-based sustainable and customized smart irrigation framework to capture the real-time data of tomato plants. This helps in automatic underground drip irrigation scheduling. This also predicts total water demand and usage, and measure plant growth status. The edge-IoT cloud data transmission control and optimization has been enforced using Smart irrigation data optimization and robust transmission (SIDORT) Message Queuing Telemetry Transport (MQTT) system. We develop a hybrid algorithm named Linked least traversal (LLT) for machine-to-machine communication (M2M). Also, a Reinforcement learning (RL) based Optimal Soil Wetness Closeness Policy (OSWCP) for irrigation scheduling has been proposed. The performance of the proposed smart irrigation models has been validated through extensive experiments using real-time data in which OSWCP performance has been measured at a 97.88 % accuracy rate. Additionally, a comparison of our proposed architecture has been accomplished by resolving the existing smart irrigation system challenges.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.