A numerical model for the simulation of complex planar Newtonian interfaces

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"A numerical model for the simulation of complex planar Newtonian interfaces","authors":"","doi":"10.1016/j.apm.2024.115653","DOIUrl":null,"url":null,"abstract":"<div><p>We present a numerical model for the simulation of complex planar interfaces at which moving solid objects can be immersed, reproducing a wide variety of experimental conditions. The mathematical model consists of the Navier-Stokes equations governing the incompressible viscous flow in the liquid subphase, the transport equation for the evolution of the surfactant concentration at the interface, and the interfacial stress balance equation. The equations are simplified by treating the problem as isothermal and the surfactant as insoluble. The bulk flow equations are discretized using a collocated finite volume method, while the interfacial flow equations are discretized using a finite area method. The Boussinesq-Scriven interface constitutive model and a variant form accounting for extensional viscosity are used to describe the extra surface stress tensor. The coupling between surfactant concentration, interfacial velocity, and bulk velocity is treated implicitly by solving the interfacial and bulk equations sequentially at each time step until a stopping criterion is satisfied. The motion of the solid is treated by an arbitrary Lagrangian-Eulerian method. The model has been implemented in the OpenFOAM framework and allows the incorporation of new interface models and solvers, making the developed new package a versatile and powerful tool in the field of computational rheology. Applications of the model include the numerical simulation of flow around objects, such as probes, immersed at a complex interface, reproducing given experimental conditions, and its use as a tool in the analysis and design of interfacial stress rheometers. Several test cases have been performed to validate the model by comparing the results obtained with analytical solutions and with numerical and experimental results available in the literature.</p></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0307904X24004062/pdfft?md5=32a3cf2b68f9e5f06415b716bf45f56c&pid=1-s2.0-S0307904X24004062-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X24004062","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a numerical model for the simulation of complex planar interfaces at which moving solid objects can be immersed, reproducing a wide variety of experimental conditions. The mathematical model consists of the Navier-Stokes equations governing the incompressible viscous flow in the liquid subphase, the transport equation for the evolution of the surfactant concentration at the interface, and the interfacial stress balance equation. The equations are simplified by treating the problem as isothermal and the surfactant as insoluble. The bulk flow equations are discretized using a collocated finite volume method, while the interfacial flow equations are discretized using a finite area method. The Boussinesq-Scriven interface constitutive model and a variant form accounting for extensional viscosity are used to describe the extra surface stress tensor. The coupling between surfactant concentration, interfacial velocity, and bulk velocity is treated implicitly by solving the interfacial and bulk equations sequentially at each time step until a stopping criterion is satisfied. The motion of the solid is treated by an arbitrary Lagrangian-Eulerian method. The model has been implemented in the OpenFOAM framework and allows the incorporation of new interface models and solvers, making the developed new package a versatile and powerful tool in the field of computational rheology. Applications of the model include the numerical simulation of flow around objects, such as probes, immersed at a complex interface, reproducing given experimental conditions, and its use as a tool in the analysis and design of interfacial stress rheometers. Several test cases have been performed to validate the model by comparing the results obtained with analytical solutions and with numerical and experimental results available in the literature.

模拟复杂平面牛顿界面的数值模型
我们提出了一种用于模拟复杂平面界面的数值模型,在这种界面上可以浸入移动的固体物体,再现各种实验条件。该数学模型包括控制液相中不可压缩粘性流动的纳维-斯托克斯方程、界面上表面活性剂浓度变化的传输方程以及界面应力平衡方程。这些方程通过将问题视为等温和表面活性剂不溶解而得到简化。体流动方程采用拼合有限体积法离散化,而界面流动方程则采用有限面积法离散化。布森斯克驱动的界面构成模型和考虑到延伸粘度的变体形式用于描述额外的表面应力张量。对表面活性剂浓度、界面速度和体积速度之间的耦合进行了隐式处理,即在每个时间步长依次求解界面方程和体积方程,直到满足停止标准。固体运动采用任意拉格朗日-欧勒方法处理。该模型已在 OpenFOAM 框架中实现,并允许纳入新的界面模型和求解器,从而使开发的新软件包成为计算流变学领域的多功能强大工具。该模型的应用包括对浸入复杂界面的探针等物体周围的流动进行数值模拟,再现给定的实验条件,以及将其用作分析和设计界面应力流变仪的工具。为了验证该模型,我们对几个测试案例进行了验证,将获得的结果与分析解以及文献中的数值和实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematical Modelling
Applied Mathematical Modelling 数学-工程:综合
CiteScore
9.80
自引率
8.00%
发文量
508
审稿时长
43 days
期刊介绍: Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged. This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering. Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信