Quzong Baima , Xiangkun Zhu , Weibing Shen , Zhaofu Gao , Bin Yan , Yuelong Chen
{"title":"A refined model for the mechanisms of Precambrian phosphorite formation","authors":"Quzong Baima , Xiangkun Zhu , Weibing Shen , Zhaofu Gao , Bin Yan , Yuelong Chen","doi":"10.1016/j.gloplacha.2024.104562","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the economic and scientific importance of Precambrian phosphorites, our understanding of the mechanism leading to their formation remains limited, including for the largest phosphogenic episode in the late Neoproterozoic. To improve our understanding of Precambrian phosphorite formation, we combined sedimentology, petrography, and elemental, and Fe-C isotopic analyses to study the two main phosphorite beds (the lower and upper phosphorite beds) in the Ediacaran Doushantuo Formation, Zhangcunping area, South China. The phosphorites consist mainly of granular textures characterized by densely packed grains, some of which are coated with secondary phosphate growth. However, there are notable differences in the mineralogy, microfossil assemblages, and elemental contents of the two beds. The lower phosphorites have no Ce anomaly, and relatively low Y/Ho ratios and positive δ<sup>56</sup>Fe values (0.04–0.30 ‰, average of 0.19 ‰). In contrast, the upper phosphorites have negative Ce anomalies and higher Y/Ho ratios and near-zero δ<sup>56</sup>Fe values (−0.29–0.19 ‰ (average of −0.01 ‰). These observations suggest that the lower phosphorites formed in anoxic-suboxic environments, whereas the upper phosphorites formed in relatively oxygenated environments. The δ<sup>13</sup>C<sub>carb</sub> values of the phosphorites range from −3.97 ‰ to 1.71 ‰ (average of −1.56 ‰), and are lighter than values in dolostones (−0.52 ‰ to 4.39 ‰, average of 2.02 ‰). This suggesting that formation of the Doushantuo phosphorites was influenced by degradation of organic matter in an ocean with high primary productivity. The lower phosphorites, which were also regulated by Fe redox pumping, have positive δ<sup>56</sup>Fe values, along with the presence of pyrite framboids and iron oxides, suggesting deposition near the Fe-redox boundary where extensive Fe cycling. The upper phosphorites show positive correlations between Mn and Fe, and Mn/Fe and P<sub>2</sub>O<sub>5</sub>, suggesting formation near the Mn boundary with extensive Mn cycling, primarily mediated by Mn redox pumping. Sedimentological observation indicate that primary phosphates were concentrated into granular phosphorites by winnowing processes following primary precipitation. Accordingly, we propose a refined model for Precambrian phosphorite formation in which degradation of organic matter, Fe and Mn pumping, and physical reworking of deposits co-evolve and interact within a dynamic Precambrian redox environment. Our model provides a reasonable explanation for the distribution of global phosphorite deposits throughout geological history.</p></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"241 ","pages":"Article 104562"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124002091","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the economic and scientific importance of Precambrian phosphorites, our understanding of the mechanism leading to their formation remains limited, including for the largest phosphogenic episode in the late Neoproterozoic. To improve our understanding of Precambrian phosphorite formation, we combined sedimentology, petrography, and elemental, and Fe-C isotopic analyses to study the two main phosphorite beds (the lower and upper phosphorite beds) in the Ediacaran Doushantuo Formation, Zhangcunping area, South China. The phosphorites consist mainly of granular textures characterized by densely packed grains, some of which are coated with secondary phosphate growth. However, there are notable differences in the mineralogy, microfossil assemblages, and elemental contents of the two beds. The lower phosphorites have no Ce anomaly, and relatively low Y/Ho ratios and positive δ56Fe values (0.04–0.30 ‰, average of 0.19 ‰). In contrast, the upper phosphorites have negative Ce anomalies and higher Y/Ho ratios and near-zero δ56Fe values (−0.29–0.19 ‰ (average of −0.01 ‰). These observations suggest that the lower phosphorites formed in anoxic-suboxic environments, whereas the upper phosphorites formed in relatively oxygenated environments. The δ13Ccarb values of the phosphorites range from −3.97 ‰ to 1.71 ‰ (average of −1.56 ‰), and are lighter than values in dolostones (−0.52 ‰ to 4.39 ‰, average of 2.02 ‰). This suggesting that formation of the Doushantuo phosphorites was influenced by degradation of organic matter in an ocean with high primary productivity. The lower phosphorites, which were also regulated by Fe redox pumping, have positive δ56Fe values, along with the presence of pyrite framboids and iron oxides, suggesting deposition near the Fe-redox boundary where extensive Fe cycling. The upper phosphorites show positive correlations between Mn and Fe, and Mn/Fe and P2O5, suggesting formation near the Mn boundary with extensive Mn cycling, primarily mediated by Mn redox pumping. Sedimentological observation indicate that primary phosphates were concentrated into granular phosphorites by winnowing processes following primary precipitation. Accordingly, we propose a refined model for Precambrian phosphorite formation in which degradation of organic matter, Fe and Mn pumping, and physical reworking of deposits co-evolve and interact within a dynamic Precambrian redox environment. Our model provides a reasonable explanation for the distribution of global phosphorite deposits throughout geological history.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.