Enhanced photoconductivity via photon down-conversion by incorporation of solution-processed 3C-SiC QDs on nanostructured black silicon

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abdulmutolib O. Olaoye , Sani Muhammad , M. Hazwan Hussin , Mohd Zamir Pakhuruddin , Md. Roslan Hashim , Marzaini Rashid
{"title":"Enhanced photoconductivity via photon down-conversion by incorporation of solution-processed 3C-SiC QDs on nanostructured black silicon","authors":"Abdulmutolib O. Olaoye ,&nbsp;Sani Muhammad ,&nbsp;M. Hazwan Hussin ,&nbsp;Mohd Zamir Pakhuruddin ,&nbsp;Md. Roslan Hashim ,&nbsp;Marzaini Rashid","doi":"10.1016/j.materresbull.2024.113072","DOIUrl":null,"url":null,"abstract":"<div><p>Colloidal quantum dots (CODs) have attracted attention towards the next-generation optoelectronic devices capable of tuning the bandgap to capture photons at the UV region which is the major impediment of silicon (Si) for optoelectronic applications. However, CODs convert higher-energy photons into lower-energies photons through spectral down-conversion to UV visible. This study describes the photoconductivity effects of colloidal 3C-SiC QDs onto the underlying black silicon (b-Si) for spectral down-conversion effect. The Si showed a remarkable decrease in broadband reflectance after being etched to b-Si via metal-assisted chemical etching (MACE) over a broad spectral wavelength range of 300–1100 nm. Incorporating QDs onto underlying b-Si enhanced the device responsivity from 0.034 A/W to 0.53 A/W with the formation of space charge through the down-conversion effect. Furthermore, the photovoltaic measurements demonstrate the superior performance of hybrid colloidal 3C-Si QDs/b-Si with a power conversion efficiency (PCE) of ∼7.28 % compared to b-Si without QDs (5.57 %) photovoltaic cells. Our research provides insight into the down-conversion effects of colloidal 3C-SiC QDs for photovoltaic and photodetector applications.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"181 ","pages":"Article 113072"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004033/pdfft?md5=50d0058e2a1b953958b8ee12161dcfb6&pid=1-s2.0-S0025540824004033-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004033","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidal quantum dots (CODs) have attracted attention towards the next-generation optoelectronic devices capable of tuning the bandgap to capture photons at the UV region which is the major impediment of silicon (Si) for optoelectronic applications. However, CODs convert higher-energy photons into lower-energies photons through spectral down-conversion to UV visible. This study describes the photoconductivity effects of colloidal 3C-SiC QDs onto the underlying black silicon (b-Si) for spectral down-conversion effect. The Si showed a remarkable decrease in broadband reflectance after being etched to b-Si via metal-assisted chemical etching (MACE) over a broad spectral wavelength range of 300–1100 nm. Incorporating QDs onto underlying b-Si enhanced the device responsivity from 0.034 A/W to 0.53 A/W with the formation of space charge through the down-conversion effect. Furthermore, the photovoltaic measurements demonstrate the superior performance of hybrid colloidal 3C-Si QDs/b-Si with a power conversion efficiency (PCE) of ∼7.28 % compared to b-Si without QDs (5.57 %) photovoltaic cells. Our research provides insight into the down-conversion effects of colloidal 3C-SiC QDs for photovoltaic and photodetector applications.

Abstract Image

在纳米结构黑硅上掺入溶液加工的 3C-SiC QD,通过光子下转换增强光电导性
胶体量子点(CODs)能够调整带隙以捕获紫外区域的光子,从而成为下一代光电设备的关注点。然而,COD 可通过光谱下转换将高能光子转化为低能光子,从而实现紫外可见光。本研究描述了胶体 3C-SiC QD 在底层黑硅(b-Si)上的光电导效应,以实现光谱下转换效果。通过金属辅助化学蚀刻(MACE)将硅蚀刻为黑硅后,在 300-1100 纳米的宽光谱波长范围内,硅的宽带反射率明显下降。通过下转换效应形成的空间电荷,将 QDs 嵌入底层双硅片可将器件响应率从 0.034 A/W 提高到 0.53 A/W。此外,光伏测量结果表明,3C-Si QDs/b-Si 混合胶体的性能优越,与不含 QDs 的 b-Si 光伏电池(5.57%)相比,其功率转换效率(PCE)达 7.28%。我们的研究深入探讨了胶体 3C-SiC QD 在光伏和光电探测器应用中的下转换效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信