Stabilizing effects of higher-order quantum corrections on charged BTZ black hole thermodynamics

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
{"title":"Stabilizing effects of higher-order quantum corrections on charged BTZ black hole thermodynamics","authors":"","doi":"10.1016/j.nuclphysb.2024.116672","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the thermodynamic properties and stability of static charged BTZ black holes with the inclusion of higher-order quantum corrections. The corrections to the entropy, mass, and Helmholtz free energy are derived, revealing the intricate interplay between quantum effects and classical gravitational forces in the context of black hole thermodynamics. The study of the specific heat capacity shows that higher-order corrections stabilize the system by removing the instabilities present at lower orders. The analysis of the van der Waals-like isotherms demonstrates the continuous transition from a highly compressible to an almost incompressible regime as the volume is decreased, akin to the behavior of supercritical fluids. Notably, the isotherms do not exhibit any regions of negative compressibility, indicating the absence of instabilities. Furthermore, the convexity of the Helmholtz free energy as a function of volume confirms the stability of the charged BTZ black hole system. These findings provide valuable insights into the complex thermodynamic landscape of three-dimensional black holes and the role of quantum corrections in shaping their behavior.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002384/pdfft?md5=e5b552aada771ae05dc03fb309917cfd&pid=1-s2.0-S0550321324002384-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002384","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the thermodynamic properties and stability of static charged BTZ black holes with the inclusion of higher-order quantum corrections. The corrections to the entropy, mass, and Helmholtz free energy are derived, revealing the intricate interplay between quantum effects and classical gravitational forces in the context of black hole thermodynamics. The study of the specific heat capacity shows that higher-order corrections stabilize the system by removing the instabilities present at lower orders. The analysis of the van der Waals-like isotherms demonstrates the continuous transition from a highly compressible to an almost incompressible regime as the volume is decreased, akin to the behavior of supercritical fluids. Notably, the isotherms do not exhibit any regions of negative compressibility, indicating the absence of instabilities. Furthermore, the convexity of the Helmholtz free energy as a function of volume confirms the stability of the charged BTZ black hole system. These findings provide valuable insights into the complex thermodynamic landscape of three-dimensional black holes and the role of quantum corrections in shaping their behavior.

高阶量子修正对带电 BTZ 黑洞热力学的稳定效应
本文研究了加入高阶量子修正的静态带电 BTZ 黑洞的热力学性质和稳定性。推导出了熵修正、质量修正和亥姆霍兹自由能修正,揭示了黑洞热力学中量子效应与经典引力之间错综复杂的相互作用。对比热容的研究表明,高阶修正消除了低阶存在的不稳定性,从而稳定了系统。对范德瓦耳斯类等温线的分析表明,随着体积的减小,系统从高度可压缩连续过渡到几乎不可压缩,这与超临界流体的行为类似。值得注意的是,等温线没有表现出任何负压缩性区域,表明不存在不稳定性。此外,亥姆霍兹自由能作为体积函数的凸性证实了带电 BTZ 黑洞系统的稳定性。这些发现为了解三维黑洞复杂的热力学状况以及量子修正在塑造黑洞行为中的作用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信