Based on experiment and quantum chemical calculations: a study of the co-pyrolysis mechanism of polyesterimide enameled wires with polyvinyl chloride and the catalytic effect of endogenous metal Cu

IF 12.4 Q1 ENVIRONMENTAL SCIENCES
Ran Tao , Bin Li , Yufeng Wu , Wei Zhang , Lijuan Zhao , Haoran Yuan , Jing Gu , Yong Chen
{"title":"Based on experiment and quantum chemical calculations: a study of the co-pyrolysis mechanism of polyesterimide enameled wires with polyvinyl chloride and the catalytic effect of endogenous metal Cu","authors":"Ran Tao ,&nbsp;Bin Li ,&nbsp;Yufeng Wu ,&nbsp;Wei Zhang ,&nbsp;Lijuan Zhao ,&nbsp;Haoran Yuan ,&nbsp;Jing Gu ,&nbsp;Yong Chen","doi":"10.1016/j.resenv.2024.100167","DOIUrl":null,"url":null,"abstract":"<div><p>Pyrolysis technology is a green and efficient method for recycling enameled wires. However, since waste enameled wires are typically recovered from electronic waste, they often contain small amounts of wires and cables. Therefore, during the pyrolysis process of waste enameled wires, it is inevitable for the paint film and the cable sheath to undergo co-pyrolysis. Polyesterimide enameled wires (EPEsI) and polyvinyl chloride (PVC) were chosen as represent enameled wires and cable sheath materials, respectively. Using thermogravimetric analysis with various pyrolysis kinetic analysis methods, the pyrolysis characteristics and kinetics of EPEsI and Mixture (mixture of EPEsI and PVC) were studied. Through synergy analysis and pyrolysis-gas chromatography/mass spectrometry analysis, the influence of PVC on the pyrolysis of EPEsI was elucidated from aspects such as pyrolysis characteristics and product distribution. Based on density functional theory calculations and wave function analysis, the role of endogenous metal Cu in EPEsI on the pyrolysis processes of PEsI and PVC, as well as the mechanism of HCl from PVC on the pyrolysis of PEsI, were clarified.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100167"},"PeriodicalIF":12.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666916124000203/pdfft?md5=c9d8712a542d3b0f788519ee479c3952&pid=1-s2.0-S2666916124000203-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666916124000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pyrolysis technology is a green and efficient method for recycling enameled wires. However, since waste enameled wires are typically recovered from electronic waste, they often contain small amounts of wires and cables. Therefore, during the pyrolysis process of waste enameled wires, it is inevitable for the paint film and the cable sheath to undergo co-pyrolysis. Polyesterimide enameled wires (EPEsI) and polyvinyl chloride (PVC) were chosen as represent enameled wires and cable sheath materials, respectively. Using thermogravimetric analysis with various pyrolysis kinetic analysis methods, the pyrolysis characteristics and kinetics of EPEsI and Mixture (mixture of EPEsI and PVC) were studied. Through synergy analysis and pyrolysis-gas chromatography/mass spectrometry analysis, the influence of PVC on the pyrolysis of EPEsI was elucidated from aspects such as pyrolysis characteristics and product distribution. Based on density functional theory calculations and wave function analysis, the role of endogenous metal Cu in EPEsI on the pyrolysis processes of PEsI and PVC, as well as the mechanism of HCl from PVC on the pyrolysis of PEsI, were clarified.

Abstract Image

基于实验和量子化学计算:聚酯酰亚胺漆包线与聚氯乙烯共热解机理及内源金属 Cu 催化作用的研究
热解技术是一种回收漆包线的绿色高效方法。然而,由于废漆包线通常是从电子垃圾中回收的,其中往往含有少量的电线和电缆。因此,在热解废漆包线的过程中,漆膜和电缆护套不可避免地会发生共热解。我们选择聚酯亚胺漆包线(EPEsI)和聚氯乙烯(PVC)分别作为漆包线和电缆护套的代表材料。利用热重分析和各种热解动力学分析方法,研究了 EPEsI 和 Mixture(EPEsI 和 PVC 的混合物)的热解特性和动力学。通过协同分析和热解-气相色谱/质谱分析,从热解特性和产物分布等方面阐明了 PVC 对 EPEsI 热解的影响。基于密度泛函理论计算和波函数分析,阐明了 EPEsI 中的内源金属 Cu 对 PEsI 和 PVC 热解过程的作用,以及 PVC 中的 HCl 对 PEsI 热解的作用机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Resources Environment and Sustainability
Resources Environment and Sustainability Environmental Science-Environmental Science (miscellaneous)
CiteScore
15.10
自引率
0.00%
发文量
41
审稿时长
33 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信