Ioanna Pallikara, Jonathan M. Skelton, Lauren E. Hatcher and Anuradha R. Pallipurath*,
{"title":"Going beyond the Ordered Bulk: A Perspective on the Use of the Cambridge Structural Database for Predictive Materials Design","authors":"Ioanna Pallikara, Jonathan M. Skelton, Lauren E. Hatcher and Anuradha R. Pallipurath*, ","doi":"10.1021/acs.cgd.4c0069410.1021/acs.cgd.4c00694","DOIUrl":null,"url":null,"abstract":"<p >When Olga Kennard founded the Cambridge Crystallographic Data Centre in 1965, the Cambridge Structural Database was a pioneering attempt to collect scientific data in a standard format. Since then, it has evolved into an indispensable resource in contemporary molecular materials science, with over 1.25 million structures and comprehensive software tools for searching, visualizing and analyzing the data. In this perspective, we discuss the use of the CSD and CCDC tools to address the multiscale challenge of predictive materials design. We provide an overview of the core capabilities of the CSD and CCDC software and demonstrate their application to a range of materials design problems with recent case studies drawn from topical research areas, focusing in particular on the use of data mining and machine learning techniques. We also identify several challenges that can be addressed with existing capabilities or through new capabilities with varying levels of development effort.</p><p >We provide a perspective on the use of the Cambridge Structural Database for predictive design of molecular materials, highlighting case studies drawn from topical research areas and identifying opportunities for the future.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"24 17","pages":"6911–6930 6911–6930"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.cgd.4c00694","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00694","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
When Olga Kennard founded the Cambridge Crystallographic Data Centre in 1965, the Cambridge Structural Database was a pioneering attempt to collect scientific data in a standard format. Since then, it has evolved into an indispensable resource in contemporary molecular materials science, with over 1.25 million structures and comprehensive software tools for searching, visualizing and analyzing the data. In this perspective, we discuss the use of the CSD and CCDC tools to address the multiscale challenge of predictive materials design. We provide an overview of the core capabilities of the CSD and CCDC software and demonstrate their application to a range of materials design problems with recent case studies drawn from topical research areas, focusing in particular on the use of data mining and machine learning techniques. We also identify several challenges that can be addressed with existing capabilities or through new capabilities with varying levels of development effort.
We provide a perspective on the use of the Cambridge Structural Database for predictive design of molecular materials, highlighting case studies drawn from topical research areas and identifying opportunities for the future.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.