Going beyond the Ordered Bulk: A Perspective on the Use of the Cambridge Structural Database for Predictive Materials Design

IF 3.4 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ioanna Pallikara, Jonathan M. Skelton, Lauren E. Hatcher and Anuradha R. Pallipurath*, 
{"title":"Going beyond the Ordered Bulk: A Perspective on the Use of the Cambridge Structural Database for Predictive Materials Design","authors":"Ioanna Pallikara,&nbsp;Jonathan M. Skelton,&nbsp;Lauren E. Hatcher and Anuradha R. Pallipurath*,&nbsp;","doi":"10.1021/acs.cgd.4c0069410.1021/acs.cgd.4c00694","DOIUrl":null,"url":null,"abstract":"<p >When Olga Kennard founded the Cambridge Crystallographic Data Centre in 1965, the Cambridge Structural Database was a pioneering attempt to collect scientific data in a standard format. Since then, it has evolved into an indispensable resource in contemporary molecular materials science, with over 1.25 million structures and comprehensive software tools for searching, visualizing and analyzing the data. In this perspective, we discuss the use of the CSD and CCDC tools to address the multiscale challenge of predictive materials design. We provide an overview of the core capabilities of the CSD and CCDC software and demonstrate their application to a range of materials design problems with recent case studies drawn from topical research areas, focusing in particular on the use of data mining and machine learning techniques. We also identify several challenges that can be addressed with existing capabilities or through new capabilities with varying levels of development effort.</p><p >We provide a perspective on the use of the Cambridge Structural Database for predictive design of molecular materials, highlighting case studies drawn from topical research areas and identifying opportunities for the future.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"24 17","pages":"6911–6930 6911–6930"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.cgd.4c00694","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00694","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

When Olga Kennard founded the Cambridge Crystallographic Data Centre in 1965, the Cambridge Structural Database was a pioneering attempt to collect scientific data in a standard format. Since then, it has evolved into an indispensable resource in contemporary molecular materials science, with over 1.25 million structures and comprehensive software tools for searching, visualizing and analyzing the data. In this perspective, we discuss the use of the CSD and CCDC tools to address the multiscale challenge of predictive materials design. We provide an overview of the core capabilities of the CSD and CCDC software and demonstrate their application to a range of materials design problems with recent case studies drawn from topical research areas, focusing in particular on the use of data mining and machine learning techniques. We also identify several challenges that can be addressed with existing capabilities or through new capabilities with varying levels of development effort.

We provide a perspective on the use of the Cambridge Structural Database for predictive design of molecular materials, highlighting case studies drawn from topical research areas and identifying opportunities for the future.

Abstract Image

超越有序块体:透视剑桥结构数据库在预测性材料设计中的应用
1965 年,奥尔加-肯纳德(Olga Kennard)创建了剑桥晶体学数据中心(Cambridge Crystallographic Data Centre),剑桥结构数据库(Cambridge Structural Database)是以标准格式收集科学数据的一次开创性尝试。从那时起,它已发展成为当代分子材料科学中不可或缺的资源,拥有 125 万多个结构和用于搜索、可视化和分析数据的综合软件工具。在本文中,我们将讨论如何利用 CSD 和 CCDC 工具来应对预测性材料设计所面临的多尺度挑战。我们概述了 CSD 和 CCDC 软件的核心功能,并通过最新的专题研究领域案例,特别是数据挖掘和机器学习技术的使用,展示了它们在一系列材料设计问题中的应用。我们还确定了可以利用现有功能或通过不同程度开发工作的新功能来应对的若干挑战。我们对剑桥结构数据库在分子材料预测性设计中的应用进行了展望,重点介绍了来自专题研究领域的案例研究,并确定了未来的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信