{"title":"Multiple Sclerosis: Pathogenesis Mechanism and Biomarkers.","authors":"Ashwani Arya, Manish Dhall, Vineet Mittal, Deepak Kaushik, Priya Mudgal, Tarun Kumar, Manisha Pandey, Renu Kadian, Prerna Sharma, Nidhi Rani, Thakur Gurjeet Singh","doi":"10.2174/0118715249307633240817160735","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is an unceasing, demyelinating, idiopathic inflammatory, and neurodegenerative disease of the Central Nervous System (CNS.) The disease is characterized by the occurrence of neurological symptoms over a period of days to weeks, abide by partial or absolute diminutions of various durations. In this review, a concise outline on disease activity and progression of MS, pathogenesis with the special prominence on the biomarkers for the MS as therapeutic targets has been discussed by carrying out a comprehensive literature survey employing chief websites and search engines for investigation. Cortical inflammation, neurodegeneration, demyelination, axonal injury, axonal loss, oligodendrocytes, mitochondrial dysfunction, microglia activation, oxidative and nitrosative stress are the pathological hallmarks of the MS. CNS neurofilaments, chitinase and chitinase 3-like proteins, soluble circulating form (sCD163), Chemokine ligand 13 (CXCL13), immunoglobulin M, MicroRNA (miRNA) and messenger Ribonucleic Acid (mRNA), Glial fibrillary acidic protein (GFAP), serum osteopontin, 8-iso-prostaglandin F2α (8-iso-PGF2 α), apo-Lipoprotein E and myelinreactive T cells are some of the therapeutically valuable biomarkers for such multifarious disorder. MS is one of the chronic neurodegenerative diseases with undefined etiology. The study of the pathophysiology of the disease and the involvement of certain biomarkers can help identify new targets for therapeutic intercession, identify individuals at risk of developing the disease later in life, and allow more effective treatment of progressive diseases such as MS.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715249307633240817160735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple sclerosis (MS) is an unceasing, demyelinating, idiopathic inflammatory, and neurodegenerative disease of the Central Nervous System (CNS.) The disease is characterized by the occurrence of neurological symptoms over a period of days to weeks, abide by partial or absolute diminutions of various durations. In this review, a concise outline on disease activity and progression of MS, pathogenesis with the special prominence on the biomarkers for the MS as therapeutic targets has been discussed by carrying out a comprehensive literature survey employing chief websites and search engines for investigation. Cortical inflammation, neurodegeneration, demyelination, axonal injury, axonal loss, oligodendrocytes, mitochondrial dysfunction, microglia activation, oxidative and nitrosative stress are the pathological hallmarks of the MS. CNS neurofilaments, chitinase and chitinase 3-like proteins, soluble circulating form (sCD163), Chemokine ligand 13 (CXCL13), immunoglobulin M, MicroRNA (miRNA) and messenger Ribonucleic Acid (mRNA), Glial fibrillary acidic protein (GFAP), serum osteopontin, 8-iso-prostaglandin F2α (8-iso-PGF2 α), apo-Lipoprotein E and myelinreactive T cells are some of the therapeutically valuable biomarkers for such multifarious disorder. MS is one of the chronic neurodegenerative diseases with undefined etiology. The study of the pathophysiology of the disease and the involvement of certain biomarkers can help identify new targets for therapeutic intercession, identify individuals at risk of developing the disease later in life, and allow more effective treatment of progressive diseases such as MS.