Iteratively Refined Image Reconstruction with Learned Attentive Regularizers.

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Numerical Functional Analysis and Optimization Pub Date : 2024-08-11 eCollection Date: 2024-01-01 DOI:10.1080/01630563.2024.2384849
Mehrsa Pourya, Sebastian Neumayer, Michael Unser
{"title":"Iteratively Refined Image Reconstruction with Learned Attentive Regularizers.","authors":"Mehrsa Pourya, Sebastian Neumayer, Michael Unser","doi":"10.1080/01630563.2024.2384849","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a regularization scheme for image reconstruction that leverages the power of deep learning while hinging on classic sparsity-promoting models. Many deep-learning-based models are hard to interpret and cumbersome to analyze theoretically. In contrast, our scheme is interpretable because it corresponds to the minimization of a series of convex problems. For each problem in the series, a mask is generated based on the previous solution to refine the regularization strength spatially. In this way, the model becomes progressively attentive to the image structure. For the underlying update operator, we prove the existence of a fixed point. As a special case, we investigate a mask generator for which the fixed-point iterations converge to a critical point of an explicit energy functional. In our experiments, we match the performance of state-of-the-art learned variational models for the solution of inverse problems. Additionally, we offer a promising balance between interpretability, theoretical guarantees, reliability, and performance.</p>","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"45 7-9","pages":"411-440"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2024.2384849","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a regularization scheme for image reconstruction that leverages the power of deep learning while hinging on classic sparsity-promoting models. Many deep-learning-based models are hard to interpret and cumbersome to analyze theoretically. In contrast, our scheme is interpretable because it corresponds to the minimization of a series of convex problems. For each problem in the series, a mask is generated based on the previous solution to refine the regularization strength spatially. In this way, the model becomes progressively attentive to the image structure. For the underlying update operator, we prove the existence of a fixed point. As a special case, we investigate a mask generator for which the fixed-point iterations converge to a critical point of an explicit energy functional. In our experiments, we match the performance of state-of-the-art learned variational models for the solution of inverse problems. Additionally, we offer a promising balance between interpretability, theoretical guarantees, reliability, and performance.

利用学习型注意正则迭代精炼图像重构
我们提出了一种用于图像重建的正则化方案,它充分利用了深度学习的力量,同时又以经典的稀疏性促进模型为基础。许多基于深度学习的模型难以解释,理论分析也很繁琐。相比之下,我们的方案是可解释的,因为它对应于一系列凸问题的最小化。对于系列中的每个问题,都会根据之前的解决方案生成一个掩码,以在空间上完善正则化强度。这样,模型就能逐步关注图像结构。对于底层更新算子,我们证明了定点的存在。作为一个特例,我们研究了一种掩膜生成器,其定点迭代收敛于一个显式能量函数的临界点。在实验中,我们在逆问题求解方面的表现与最先进的学习变分模型不相上下。此外,我们还在可解释性、理论保证、可靠性和性能之间取得了良好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
74
审稿时长
6-12 weeks
期刊介绍: Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal. Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信